·§¸¶¤Ç¤¹¡£¥·¥ó¥Ý¥¸¥¦¥à¤ÎµÏ¿¤ò¤Þ¤È¤Þ¤Ã¤¿¤È¤³¤í¤Þ¤ÇÁ÷¤ê¤Þ¤¹¡£ ɽ¸½ÏÀ¥Û¡¼¥à¥Ú¡¼¥¸Åù¤Ç¤´ÍøÍѤ¯¤À¤µ¤¤¡£ÉÔ´°Á´¤Ê¤â¤Î¤À¤È¤ª¤â¤¤ ¤Þ¤¹¤¬¡¢ÄûÀµ¡¢Äɲᢺï½üÅù¤Ï»ä¤Þ¤Ç¤´Ï¢Íí¤¯¤À¤µ¤¤¡£¥×¥ê¥ó¥È¥¢ ¥¦¥È¤·¤¿¤â¤Î¤Ï¼¡²ó¤ªÌܤˤ«¤«¤Ã¤¿¤È¤¤ªÅϤ·¤·¤Þ¤¹¡£¸µ¤Î¸¶¹Æ¤Ï °ìÂÀϺ7¤Ç¤¹¡£°ìÅÙ¤ËÁ÷¤ì¤Ê¤¤¤Î¤Ç²¿²ó¤«¤Ëʬ³ä¤·¤Þ¤¹¡£(¤«¤Ë¹¾ ¤µ¤ó¤Î³ª¤È¤¤¤¦»ú¤¬¤Ê¤¤¤Î¤Çºî¤ë¤Î¤ò¥µ¥Ü¤Ã¤Æ³ª¤ò»È¤Ã¤Æ¤¤¤Þ¤¹¡£ )
·§¸¶·¼ºî
Ä»¼èÂç³Ø¹©³ØÉôÃÎǽ¾ðÊ󹩳زÊ
680Ä»¼è»Ô¸Ð»³Ä®Æî4-101
PHONE(DI):0857-31-5624
FAX :0857-31-5678
E-MAIL :kumahara@ike.tottori-u.ac.jp
ɽ¸½ÏÀ´Ø·¸¥·¥ó¥Ý¥¸¥¦¥àµÏ¿ ÊÔ½¸ÀÕǤ ·§¸¶·¼ºî
1997.3.26¹¹¿·
1956(¾¼31)
Âè1²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1956 July25-Aug.1 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
Èø´Ø±Ñ¼ù Connections
Ìî¿å¹î̦ Homogeneous space ¾å¤Î invariant linear connection ¤È¤½¤Î±þÍÑ
´äËÙĹ·Ä ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤ÎÉÔÆ°ÅÀÄêÍý
°ËÀª´´Éס¦¿ù±º¸÷Éס¦ºØÆ£ÀµÉ§ ÂоΥ꡼¥Þ¥ó¿ÍÍÂΤÎʬÎà¤Ë¤Ä¤¤¤Æ
Ìî¿å¹î̦ Kahlerian connection ¤Ë´Ø¤¹¤ë´ðËÜÄêÍý
¾¾ÅçÍ¿»° Hermitian symmetric space ¤Ë¤Ä¤¤¤Æ
ÂìÂôÀºÆó Connection and characteristic classes
¼¾å¿®¸ã Fundamental characteristic classes of sphere bundles
ÃæÌîÌÐÃË Analytic vector bundle ¤Ë¤Ä¤¤¤Æ
º´Éð°ìϺ Symplectic geometry ¤Ë¤Ä¤¤¤Æ
1958(¾¼33)
Âè3²óÀÖÁÒ¥»¥ß¥Ê¡¼¡Ö¿ÍÍÂΤȰÌÁê´ö²¿³Ø¡× 1958 July 25-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
µCharacteristic classes and homogeneous spaces (A.Borel-F.Hirzebruch) ¾Ò²ð
1.Compact Lie groups ¿ù±º¸÷É×
2.Topological preliminaries ºØÆ£´îͨ
3.Roots and characteristic classes ºØÆ£´îͨ
4.Roots ¤ÈÉÔÊÑÊ£Áǹ½Â¤ °ËÀª´´É×¾Î
5.Homogeneous space G/V ¤È Riemann-Roch-Hirzebruch ¤ÎÄêÍý Åļ°ìϺ
¶Ä¹Ìî Àµ ÅùÊýŪ¤Ê¥ê¡¼¥Þ¥ó¶õ´Ö
·¹ÓÌÚ¾¹Ï¯ Fibre ¶õ´Ö (locally trivial) ¤Î¥¹¥Ú¥¯¥È¥ë·ÏÎó¤Î°ì°ÕÀ
¸ÁÒÀ¾ÀµÉð Pseudogroup structure ¤ÎÊÑ·Á¤Ë¤Ä¤¤¤Æ
¹ÂìÂôÀºÆó Cartan Àܳ¤Î formulation
ºº´¡¹ÌÚ½ÅÉ× 3¼¡¸µ Euclid ¶õ´Ö¤Ë¤ª¤±¤ë¶ÊÌÌÏÀ¤Î´ðËÜÄêÍý¤ÎÂç°è²½
1959(¾¼34)
¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø1¡×1959 July23-25 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
µÈÂô¾°ÌÀ ²óž·²¤È¥í¡¼¥ì¥ó¥Ä·²¤Îɽ¸½
ÁÒÀ¾ÀµÉð ̵¸Â¥ê¡¼·²¤Ë¤Ä¤¤¤Æ
µÜÂô¹°À® ʬ»¶¼°¤È¿ÊÑ¿ôÈ¡¿ôÏÀ
ÃæÀ¾ ê÷ ʬ»¶¸ø¼°¤Î¾ÚÌÀ¤ÎÀÝÆ°ÏÀŪÊýË¡
°ì¾¾ ¿® ÀµÂ§Êñ¤Ë´ØÏ¢¤·¤Æ
ÃæÌî·°É× ÎÌ»ÒÎϳؤˤª¤±¤ë¾ì¤ÎÍýÏÀ¤Ë´ØÏ¢¤·¤Æ
¹â¶¶Îé»Ê ¥í¡¼¥ì¥ó¥Ä·²¤Îɽ¸½¤ÈµåÈ¡¿ô
Âè4²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1959 July 27-Aug.8.3 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
¿ù±º¸÷É× compact ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤ÎµåÈ¡¿ô
¹â¶¶Îé»Ê Lobatchevsky ¶õ´Ö¤ÎÂÓµåÈ¡¿ô
¶ÌÀî¹±É× Â¿¸µÂΤˤª¤±¤ëÎÌ»ØÉ¸¤Î¦Æ-È¡¿ô
µ×²ìƻϺ Selberg ¤ÎÍýÏÀ¤Î¾Ò²ð-¤È¤¯¤Ë G ÉÔÊÑÈùʬºîÍÑÁǤˤĤ¤¤Æ-
¹â¶¶½¨°ì ·²¤ÎÀ°¿ôɽ¸½¤Ë¤Ä¤¤¤Æ
ÍÇÏ Å¯ Group variety ¤ÎÆó,»°¤ÎÀ¼Á¤Ë¤Ä¤¤¤Æ
°ËÀª´´É× ÂоΥ꡼¥Þ¥ó¶õ´Ö¤Ë¤Ä¤¤¤Æ
´äËÙĹ·Ä Classical groups ¤Î associative algebras ¤Î¼«¸ÊƱ·¿¤Î·²¤È¤·¤Æ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ
µÈÂô¾°ÌÀ ·²¤Îɽ¸½¤ÈµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ
´äËÙĹ·Ä Homogeneous space ¤ÎÁÐÂÐÄêÍý¤Ë¤Ä¤¤¤Æ
¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø2¡×1959 Sept.27-28 ÅìµþÂç³Ø¶µÍܳØÉô
»³Æâ¶³É§ ÎÌ»ÒÎϳؤˤª¤±¤ë·²ÏÀ¤ÎÌòÌÜ
¼°æ¹¯µ× ÈóÀƼ¡¥í¡¼¥ì¥ó¥Ä·²
ÁÒÀ¾ÀµÉð ÉÔÊÑÀÑʬ¤Ë¤Ä¤¤¤Æ
ĹÌî Àµ Èùʬ²Äǽ¿ÍÍÂξå¤Î³°Èùʬ·Á¼°¤ÎÀÑʬ
ËÙ¹¾ µ× Racah algebra ¤Ë¤Ä¤¤¤Æ
´äËÙĹ·Ä ÅļÂÀϺ»á¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ
¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø3¡×1959 Nov.30-Dec.2 Ç®³¤»ÔÀ²³¤Áñ
¼¾å¿®¸ã °ì¼¡ÊÑ´¹·² GL(n,C) ¤Îɽ¸½ÏÀ
´äËÙĹ·Ä ľ¸ò·²¤È¼Ð¸ò·²¤Îɽ¸½ÏÀ
ÃæÀ¾ ê÷ ÂèÆóÎ̻Ҳ½
1960(¾¼35)
Âè5²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1960 July 26-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
µÈÂô¾°ÌÀ Automorphic functions ¤È unitary representations
º´Éð°ìϺ ÂоΠRiemann ¶õ´Ö¤Îɽ¸½¤È¥³¥ó¥Ñ¥¯¥È²½
¾¾ÅçÍ¿»° Stein Åù¼Á¶õ´Ö
°ì¾¾ ¿® Riemann Ì̤Πmoduli
º´Éð°ìϺ p¿ÊÂξå¤ÎµåÈ¡¿ô
1960(¾¼35)
Âè5²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1960.July 26-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
µÈÂô¾°ÌÀ Automorphic functions ¤È unitary representations
º´Éð°ìϺ ÂоΠRiemann ¶õ´Ö¤Îɽ¸½¤È¥³¥ó¥Ñ¥¯¥È²½
¾¾ÅçÍ¿»° Stein Åù¼Á¶õ´Ö
°ì¾¾ ¿® Riemann Ì̤Πmoduli
º´Éð°ìϺ p¿ÊÂξå¤ÎµåÈ¡¿ô
1961(¾¼36)
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)1961 Jan.5-7 ÅìµþÂç³Ø¶µÍܳØÉô
»Ö¼¸ÞϺ Automorphic form
¿ù±º¸÷É× Principal non-degenerate series
ÃÝÇ·Æâæû Representation factorielle
äÇϿɧ 3-¼¡¸µ¥í¡¼¥ì¥ó¥Ä·²¤Î¾¦¶õ´Ö¤Î¾å¤Ëºî¤é¤ì¤¿É½¸½¤Î´ûÌóʬ²ò
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1961 Sept.9-11) ÅìµþÂç³ØÍý³ØÉô
¾®¿Ë¤¢¤¹¨ ͶƳɽ¸½¤Ë¤Ä¤¤¤Æ(ȾľÀÑ·¿·²)
äÇϿɧ G.W.Mackey ¤Î induced representation
¿ù±º¸÷É× Complex semi-simple group ¤Î representation ¤Î construction
µÈÂô¾°ÌÀ Irreducible decomposition I, II
º´Éð°ìϺ Automorphic form
ÀõÌî ÍÎ Cartier ¤Ë¤è¤ë Weyl ¤Î multiplicity formula ¤Î proof
º´Éð°ìϺ µåÈ¡¿ô¤ÎÀ°¿ôÏÀ¤Ø¤Î±þÍÑ(Ramanujan ͽÁÛ)
1962(¾¼37)
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1962 May 15) ·øÅÄÅìÍÎ˵áÀ§Áñ
¿ù±º¸÷É× G/K ¤ÎµåÈ¡¿ô¤Î·èÄê
ÀÞ¸¶ÌÀÉ× Real semi-simple group ¤Îɽ¸½¤Î¹½À®
µÈÂô¾°ÌÀ ¡ç-¼¡¸µ¶õ´Ö¤Î measure
1963(¾¼38)
Âè5²óÂå¿ô¥·¥ó¥Ý¥¸¥¦¥à ¥¼¡¼¥¿È¡¿ô(1963 Oct 10-11) ÅìµþÂç³Ø
ÀÞ¸¶ÌÀÉ× Unitary ɽ¸½¤È Zeta È¡¿ô
²ÏÅķɵÁ ¦ÆÈ¡¿ô½øÏÀ
Æ£ºê¸»ÆóϺ 2¼¡·Á¼°¤Î¦ÆÈ¡¿ô
º£ÌÆó ¿¸µ´Ä¤Î¦ÆÈ¡¿ô(Godement ¤ÎÍýÏÀ)
ÅÚ°æ¸øÆó Âʱߥ⥸¥å¥é¡¼È¡¿ôÂΤȤ½¤Î¥ä¥³¥Ó¿ÍÍÂΤˤĤ¤¤Æ
¶áÆ£ Éð Hasse ¤Î¦ÆÈ¡¿ô¤Èµõ¿ô¾èË¡
ÆüËÜ¿ô³Ø²ñ (1963 Oct) ÅìµþÂç³Ø
F.Bruhat p¿ÊÂξå¤ÎÂå¿ô·²
1964(¾¼39)
¥æ¥Ë¥¿¥êɽ¸½¥·¥ó¥Ý¥¸¥¦¥à(1964.March 23-27) ·øÅÄÅìÍÎË·øÅÄÎÀ
ÀÄËÜÏÂɧ ¼ÂȾñ½ã Lie ·²¤Îɽ¸½ÏÀ
¹â¶¶Îé»Ê de Sitter group ¤Îɽ¸½ÏÀ
ºØÆ£ÀµÉ§ p-adic representation theory
ÀÞ¸¶ÌÀÉ× Plancherel formula
´Ý»³¼¢Ìï Discrete subgroup ¤Èɽ¸½ÏÀ(I)
ÀÞ¸¶ÌÀÉ× Discrete subgroup ¤Èɽ¸½ÏÀ (II)
ÅÚ°æ¸øÆó Hecke ºîÍÑÁÇ¤È trace formula
º´Æ£´´É× Åù¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤È zeta È¡¿ô
¥æ¥Ë¥¿¥êɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1964..July6-8)È¢º¬¶¯ÍåÀűÀÁñ À¤ÏÃ¿Í ÀÞ¸¶ÌÀÉ×
ÀÞ¸¶ÌÀÉ× SL(2,C) ¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ
äÇϿɧ SL(2,R) ¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ
äÇϿɧ SL(2,R) ¤ÎÁÐÂÐÀ
µÜºê ¹À¡¦µÜºê ¸ù¡¦ÀÄËÜÏÂɧ SL(2,R) ¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹
¿ù±º¸÷É× SL(2,C) ¾å¤Î Paley-Wiener ¤ÎÄêÍý
¹â¶¶Îé»Ê Kunze-Stein ¤ÎÍýÏÀ
1965(¾¼40)
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1965 Feb.22-24) µþÅÔÂç³ØÍý³ØÉô
Ê¿°æ Éð °ìÈÌ¥í¡¼¥ì¥ó¥Ä·²¤Î´ûÌóɽ¸½¤Î»ØÉ¸¸ø¼°¤È Plancherel ·¿¤ÎÄêÍý
²¬ËÜÀ¶¶¿ Plancherel formula ¤Ë¤Ä¤¤¤Æ¨¡ÆÃ¤Ë de Sitter ·²¤Î¾ì¹ç¨¡
ÀÄËÜÏÂɧ Ⱦñ½ã Lie ·²¤Î double coset ʬ²ò¤È¤½¤Î±þÍÑ
ÌÚ²¼ÁÇÉ× ¹ÔÎó´Ä¤Î Zeta È¡¿ô
Ê¿¾¾Ë°ì SL(2,R) ¤ÎÉÔϢ³·²¤Ë´Ø¤¹¤ë Weight 1/2 ¤Î Automorphic form ¤Ë¤Ä¤¤¤Æ
ÅÄÃæ½Ó°ì¡¦ÀÞ¸¶ÌÀÉ× G/K ¤ÎÀµÂ§É½¸½¤Î¥¹¥Ú¥¯¥È¥ë¤Ë¤Ä¤¤¤Æ
ÆüÊÆÈùʬ´ö²¿³Ø¥»¥ß¥Ê¡¼ (1965 June 14-19) µþÅÔÂç³Ø¿ôÍý¸¦(¾¶)
Y.Matsushima & S.Murakami On certain cohomology groups attached to hermitian symmetric spsces
S.Helgason A duality in integral geometry on symmetric spaces with application to group representations
R.Bott A fixed point theorem for elliptic systems
B.Kostant Orbits, symplectic structure and representation theory
N.Iwahori On reflection groups of non-compact symmetric spaces
M.Takeuchi Applications of the theory of Nagano to symmetric spaces
M.Kuga Fibred variety over symmetric spaces whose fibres are abelian varieties
Âè8²óÂå¿ô¥·¥ó¥Ý¥¸¥¦¥à ÉÔϢ³·²¤ÎÀ°¿ôÏÀ(1965 July 8-11)¶âÂô-»³Âå(¾¶)
ÀÄËÜÏÂɧ AIII ·¿¤Î Rank 2 ¤Îñ½ã Lie ·²¤Îɽ¸½
µ×ÊÝÅÄÉÙͺ Picard ·¿ÉÔϢ³·²¤Ë´Ø¤¹¤ëÏÃÂê
ÀÞ¸¶ÌÀÉ× Eisenstin µé¿ô¤È¥æ¥Ë¥¿¥êɽ¸½
Æ£ºê¸»ÆóϺ Poisson ¤Îϸø¼°¤Î°ìÈ̲½
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1965 Aug.27-30) È¢º¬¶¯ÍåÀűÀÁñ
²¬ËÜÀ¶¶¿¡¦»³¸ý ¶Ç¡¦ÀÞ¸¶ÌÀÉ× Harish-Chandra ¤Î½ôÍýÏÀ¤Î²òÀ⤽¤Î¾
¿ù±º¸÷É× K¡ÀG ¾å¤Î Plancherel formula
ÅÚÀî¿¿É× SL(2,C) ¤Îɽ¸½¤Î¹½À®
¿·Ã«ÂîϺ de Sitter ·²¤Î principal ¤Ç¤Ê¤¤ discrete series ¤Ë¤Ä¤¤¤Æ
ÅÄÃæ½Ó°ì¡¦ÀÞ¸¶ÌÀÉ× ÉÔϢ³·²¤ÎϢ³¥¹¥Ú¥¯¥È¥ë¤È trace formula
º´Éð°ìϺ Symplectic representation of algebraic groups
1966(¾¼41)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÄê¾ï²áÄø¡×(1966 Jan 30-Feb 1)(¾¶)
µÈÂô¾°ÌÀ¡¦Ã¤ÇϿɧ Geodesic flows on homogeneous spaces
¡ÖºîÍÑÁǴĤȷ²¤Îɽ¸½¡×(1966 Feb.19-22)
ÉÙ»³ ½ß von Neumann algebra ¤Î global structure
ÃݺêÀµÆ» Èó²Ä´¹ÀÑʬÏÀ¤ÈĴϲòÀÏ
ÉÙ»³ ½ß C*-algebra ¤Î dual space
ÃݺêÀµÆ» C*-algebra ¤Îɽ¸½¤Î direct integral decomposition ¤ÈÀ®Ê¬¤Î unitary equivalence
Ê¿°æ Éð Éé¤ÎÄê¶ÊΨ¶õ´Ö¾å¤Î geodesic flow ¤Ë¤Ä¤¤¤Æ
ÀÞ¸¶ÌÀÉ× Hermite ¿¹à¼°
¿ù±º¸÷É× Í¸Â¼¡¸µÉ½¸½¤Î duality
äÇϿɧ ¶É½ê¥³¥ó¥Ñ¥¯¥È·²¤ÎÁÐÂÐÄêÍý
ÃݺêÀµÆ» C*-algebra ¤Îɽ¸½¤Ë¤ª¤±¤ë duality
Âè4²ó Functional Analysis Symposium (1966.July13-14) ¶âÂôÂç³Ø(¾¶)
äÇϿɧ Locally Compact Group ¤ÎÃ¸Ãæ·¿ÁÐÂÐÄêÍý
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖȾñ½ã·²¾å¤Î Fourier ÊÑ´¹¤È¤½¤Î±þÍÑ¡×1966.Aug.22-26
ÀÄËÜÏÂɧ Orispherical ÊÑ´¹¤È´Ø¿ôÊýÄø¼°¤Ë¤ª¤±¤ë¤¤¤¯¤Ä¤«¤ÎÌäÂê
¿¹Ëܸ÷À¸ Radon ÊÑ´¹¤Ë´Ø¤¹¤ë°ìÈÌÏÀ¤È¤½¤Î±þÍÑ
ÀÞ¸¶ÌÀÉ× n ¼¡ Lorentz ·²¤Î class1¤Îɽ¸½¤ò n-1 ¼¡ Lorentz ·²¤ËÀ©¸Â¤·¤¿É½¸½¤Îʬ²ò
Ê¿°æ Éð °¿¼ï¤Î¼Âñ½ã·²¤Î character
ÅÄÃæ½Ó°ì SL(2,K)(K:¶É½ê¥³¥ó¥Ñ¥¯¥ÈÂÎ)¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î¹½À®Ë¡
µ×²ìƻϺ Abel ¿ÍÍÂΤò fiber ¤È¤¹¤ë fiber space ¤Î¦Æ´Ø¿ô
Conference in Katata on the theory of partial differential equations and on the theory of complex manifolds, 1966 Sept 18-22(¾¶)
K.Okamoto & H.Ozeki On some types of unitary representations
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1966.Nov.10-11) °ËÅì»Ô¸÷É÷³Õ À¤ÏÃ¿Í ºØÆ£ÀµÉ§
ºØÆ£ÀµÉ§ p¿ÊÊ¿Ì̤α¿Æ°·²¤Î¥æ¥Ë¥¿¥êɽ¸½
²¬ËÜÀ¶¶¿ °¿¤ë¼ï¤Îcohomology space¤Ë¤ª¤±¤ëɽ¸½¤Î¹½À®
¹â¶¶Îé»Ê Moscow Congress¤Ç¤ÎÏÃÂê
¿·Ã«ÂîϺ ÁжÊÌ̾å¤ÎPlancherel¤ÎÄêÍý
µÈÂô¾°ÌÀ Hilbert¶õ´Ö¤Î²óž·²
1967(¾¼42)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö̵¸Â¼¡¸µ²óž·²¤Î°ÌÁê¤È¤½¤Î±þÍÑ¡×1967 Feb. 25-27
µÈÂô¾°ÌÀ ̵¸Â¼¡¸µ²óž·²
ÈôÅÄÉ𹬠½ÅÊ£ Wiener ÀÑʬ¤Î°ìÈ̲½
»³ºêÂÙϺ ̵¸Â¼¡¸µ Laplacian
µÈÂô¾°ÌÀ ̵¸Â¼¡¸µ Lie ·²¤Î°ì¤Ä¤Î±þÍÑ(V.Arnold ¤Î¸¦µæ¤Î¾Ò²ð)
ÃæÌîèÁÉ× ¾ì¤ÎÍýÏÀ¤Ë¤ª¤±¤ë Gauge ÊÑ´¹·²
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈó¥³¥ó¥Ñ¥¯¥È·²¤ÎʪÍý¤Ø¤Î±þÍÑ¡×1967 Jun. 11-13
¹â¶¶Îé»Ê Lorentz µÚ¤Ó de Sitter ·²¤Îɽ¸½
¿·Ã«ÂîϺ 2¼¡¶ÊÌ̤ˤª¤±¤ë Lorentz ·²¤ÎÀµÂ§É½¸½¤Î´ûÌóɽ¸½¤Ø¤Îʬ²ò
ÃæÌîèÁÉס¦±×ÀîÉÒÉ× Kepler problem
ÃæÌîèÁÉס¦µµÊ¥ íì Higher spin particle ¤Î Lagrange formalism
¹âÎÓÉðɧ Infinite component ¤ÎÇÈÆ°ÊýÄø¼°
Symposium on theory of group representations and some of its applications 1967 July 6-7 µþÅÔÂç³ØÍý³ØÉô
R.Godement Introduction to the theory of Langlands
S.Tanaka On irreducible representation of binary modular congruence group mod p¦Ë
N.Tatsuuma A duality theorem for locally compact groups
M.Sugiura Duality theorem for Lie groups and their homogeneous spaces
T.Shintani
1968(¾¼43)
¥æ¥Ë¥¿¥êɽ¸½¥·¥ó¥Ý¥¸¥¦¥à(1968.Jan.27-28)µþÅÔÂç³ØÍý³ØÉô À¤ÏÿÍäÇϿɧ
·§¸¶·¼ºî Ê£ÁÇȾñ½ã·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
¿ù±º¸÷É× "¿ô³Ø"»ï¥æ¥Ë¥¿¥êɽ¸½ÏÀÆÃ½¸¹æ¤Ë¤Ä¤¤¤Æ
¿·Ã«ÂîϺ p¿ÊÂξå¤ÎÆÃ¼ìÀþ·¿·²¤Î discrete series ¤Ë¤Ä¤¤¤Æ
À¶¿åµÁÇ· ¥í¡¼¥ì¥ó¥Ä·²¾å¤Î Paley-Wiener ·¿¤ÎÄêÍý
¿ôÏÀ¾®¥°¥ë¡¼¥×¶¯Í奻¥ß¥Ê¡¼¡ÖÂå¿ô·²¤ÈÊÝ·¿È¡¿ô¡× 1968 June 22-23
º´Éð°ìϺ Abel ¿ÍÍÂΤò fibre ¤È¤¹¤ë fibre ¿ÍÍÂΤΠcompact ²½
¿¹ÅĹ¯É× Hecke ¿¹à¼°¡¢·²¤Î¥¼¡¼¥¿È¡¿ô¡¢¥Õ¥¡¥¤¥Ð¡¼Â¿ÍÍÂÎ¤Î¹çÆ±¥¼¡¼¥¿È¡¿ô¤ÎƱ°ìÀ¤Ë¤Ä¤¤¤Æ
Åĺäδ»Î Cohomology of some special tori and its applications
ÅÚ°æ¸øÆó Weil ¤ÎÈ¡¿ôÅù¼°¤Ë¤è¤ë Dirichlet µé¿ô¤ÎÆÃħÉÕ¤±¤Î»Å»ö¤Ë´Ø¤¹¤ëÃí°Õ
°Ë¸¶¹¯Î´ ɸ¿ô0¤Î correspondence ¤ò½¼Ê¬Âô»³¤â¤ÄÂå¿ô¶ÊÀþ¾å¤Ë¤Ï2³¬ Fuchs ·¿ÈùʬÊýÄø¼°¤Î¡Öcharacteristic class¡×¤¬Â¸ºß¤¹¤ë¤³¤È
´äËÙĹ·Ä ¹çƱÉôʬ·²ÌäÂê¤Ë´Ø¤¹¤ëºÇ¶á¤Î·ë²Ì¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¡ÖºîÍÑÁǴĸ¦µæ²ñ¡×(1968 Julu 1-3)(¾¶)
äÇϿɧ ·²´Ä¤òÍ¿¤¨¤ë double Hilbert algebra
ºØÆ£ÏÂÇ· On a duality for locally compact groups
ÃݺêÀµÆ» äÇÏÁÐÂÐÄêÍý¤ÈºîÍÑÁÇ´Ä
Âè3²óÈ¡¿ô²òÀϸ¦µæ²ñ 1968 July 20-22 °ñ¾ëÂç³Ø¹©³ØÉô(¾¶)
·§¸¶·¼ºî Ⱦñ½ã·²¾å¤Î Fourier ²òÀÏ(Harish-Chandra ¤ÎÍýÏÀ)
ɽ¸½ÏÀ¤È¿ôÏÀ¤È¤Î´ØÏ¢(1968.July28-30) ·øÅÄ ÅìÍÎË·øÅÄÎÀ
µ×ÊÝÅÄÉÙͺ Áê¸ßˡ§¤È¥æ¥Ë¥¿¥êɽ¸½
¿·Ã«ÂîϺ ÊÝ·¿·Á¼°¤Î Fourier Ÿ³«·¸¿ô¤Ë¤Ä¤¤¤Æ
¹â¶¶Îé»Ê SO0(n,1)¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
Ê¿°æ Éð Ⱦñ½ã·²¾å¤ÎÉÔÊÑĶȡ¿ô
¾¾Â¼±ÑÇ· Lie ´Ä¤ÎŸ³«´Ä¤Î¾¦ÂÎ
1969(¾¼44)
·²¤Îɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à 1969 Jan 13-15 µþÅÔÂç³ØÍý³ØÉô
¿·Ã«ÂîϺ Two step unipotent group ¤È Symplectic group ¤È¤ÎȾľÀѤΤ¢¤ë¼ï¤Î unitary ɽ¸½
¿ù±º¸÷É× Tannaka group ¤Î duality
Ê¿°æ Éð ñ½ã¥ê¡¼·²¤ÎÉÔÊѸÇÍĶȡ¿ô
ÅÚÀî¿¿É× SL(n,C) ¤Îɽ¸½¶õ´Ö¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ
¹â¶¶Îé»Ê
°ÂÆ£ðð°ì I.M.Gel'fand and A.A.Kirillov ¤Î Lie ¾¦ÂΤÎÍýÏÀ¤Î¾Ò²ð
ËÙÅÄÎÉÇ· W.Schmid ¤Î "Homogeneous complex manifolds and representations of semi-simple Lie group" ¤Î¾Ò²ð
¿ôÍý¸¦¸¦µæ½¸²ñ¡Öº´Æ£¤ÎĶȡ¿ôÏÀ¤È¤½¤Î±þÍÑ¡×1969.Nov. 27-29(¾¶)
²¬ËÜÀ¶¶¿ ɽ¸½ÏÀ¤Ë¤¢¤é¤ï¤ì¤ëĶȡ¿ô
1970(¾¼45)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1970.Jan.24-26) ÇòÉͲ¹Àô À¤ÏÃ¿Í °ÂÆ£ðð°ì
Ê¿°æ Éð Discrete series ¤Îɽ¸½¤È character
ÏÆËÜ ¼Â Principal series ¤Î´ûÌóÀ¤Ë¤Ä¤¤¤Æ
²¬ËÜÀ¶¶¿ Principal series ¤Îʬ²ò¤Ë¤Ä¤¤¤Æ
ÀîÃæÀëÌÀ The behavior of the spectrum of §¤¡ÀG when §¤varies
´Ý»³¼¢Ìï Holospherical subgroup ¤Î¶¦ÌòÀ¤Ë¤Ä¤¤¤Æ
À¶¿åµÁÇ· De Sitter ·²¤ÎÈïʤ·²¾å¤ÎĴϲòÀÏ
Êö¼¾¡¹° Kunze-Stein ¤ÎÍýÏÀ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ôŪÀ°¿ôÏÀ¤Ë¤ª¤±¤ëºÇ¶á¤Î½ôÌäÂê¡×1970.Jan.27-29(¾¶)
¿·Ã«ÂîϺ Poisson ¤Îϸø¼°¤Î°ì¤Ä¤ÎÎà»÷
ÅÄÃæ½Ó°ì Theta distribution ¤«¤éƳ¤«¤ì¤ë¥¢¥Ç¡¼¥ë·²¾å¤ÎÊÝ·¿·Á¼°¤Ë¤Ä¤¤¤Æ
1971(¾¼46)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1971 Feb 13-15) ÄŻԸæÅ¾ìÁñ À¤ÏÿÍÅÚÀîâÃÉ×
¿·²° ¶Ñ °ìÈÌÀþ·¿°ÌÁê¶õ´Ö¤Ë¤ª¤±¤ëµåÈ¡¿ô
¼ò°æ¹¬µÈ Nilpotent Lie ·²¤Ë´Ø¤¹¤ë Kirillov ͽÁۤˤĤ¤¤Æ
ËÙÅÄÎÉÇ· ¼ÂȾñ½ã·²¤ÎÎ¥»¶·ÏÎóɽ¸½¤Î¹½À®
ÏÆËÜ ¼Â Polarization ¤Ë¤Ä¤¤¤Æ
²¬ËÜÀ¶¶¿ Gelfand-Graev ¤Î¤¢¤ëÉÔÃí°Õ¤Ê Remark ¤Ë¤Ä¤¤¤Æ
̶ÅÄÍΰì L2(P¡ÀG/K) ¤Îʬ²ò:spectra ¤Î¤¢¤ë¹Ôư¤Ë¤Ä¤¤¤Æ
¹¾¸ýÀµ¹¸ Âоζõ´Ö¾å¤ÎµÞ¸º¾¯È¡¿ô¤Î Radon ÊÑ´¹
»°Ä»Àî¼÷°ì °ìÈÌ Lorentz ·²¾å¤ÎÇ®ÊýÄø¼°¤Ë¤Ä¤¤¤Æ
ºØÆ£ÀµÉ§ Sp(2n,k),(k:self-dual) ¤Îɽ¸½¤Î°ìÈÌŪ¤Ê¹½À®
¿ù±º¸÷É×
ÆüËÜ¿ô³Ø²ñ 1971 April ÅìµþÅÔΩÂç³Ø
ÆÃÊֱ̹é
¿·Ã«ÂîϺ ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î¥¼¡¼¥¿È¡¿ô(Âå¿ô³Ø¡¦°ÌÁê¿ô³Ø)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤ÈÂç°è²òÀϳء×1971.June 22-24
ËÙÅÄÎÉÇ· A report on realizations of the discrete series
ÆñÇÈ À¿ Maximal famillies of compact complex manifolds
M.S.Narasimhan On discrete series
¶¶ÄÞÆ»É§¡¦²¬ËÜÀ¶¶¿ An example of Lefschetz fixed point theorem for non-compact case
Çð¸¶Àµ¼ù Applications of hyperfunctions to unitary representations
¿·Ã«ÂîϺ Zeta functions associated with prehomogeneous vector spaces
º´Æ£´´É× GLn ¤Î¥¼¡¼¥¿È¡¿ô
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖOperaro algebra ¤È¤½¤Î±þÍÑ¡×(1971 Aug 9-11)(¾¶)
äÇϿɧ Plancherel measure is the Haar measure on dual object
À°¿ôÏÀÆüÊÆ¥»¥ß¥Ê¡¼ 1971 Aug 30-Sept 4 Åý·×¿ôÍý¸¦µæ½ê
H.Jaquet, ¿·Ã«ÂîϺÅù
¸¦µæ½¸²ñ¡Ö¥·¥ó¥×¥ì¥¯¥Æ¥£¥Ã¥¯Â¿ÍÍÂΡ×1971 Sept ¹ÅçÂç³Ø
Èø´Ø±Ñ¼ù Dirac operator D ¤È ¢ß
ËÙÅÄÎÉÇ· discrete series ¤Î¼Â¸½
ÏÆËÜ ¼Â Ⱦñ½ã Lie´Ä¤Î polarization
ÃÝÆâ ¾¡ µåÈ¡¿ô¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¤ÈÊÝ·¿´Ø¿ô¡×1971 Nov 10-13 À¶¿å±ÑÃËÂåɽ
»°ÂðÉÒ¹±,°Ë¸¶¿®°ìϺ,º´Éð°ìϺ,ÅÚÊý¹°ÌÀ,ÀîÃæÀëÌÀ,»°Âð¹îºÈ,ÃÝÆâ´îº´Íº, ¿¹ÅĹ¯É×
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤Î²òÀϳء×1971.Dec 1-3²¬ËÜÀ¶¶¿Âåɽ
ÅÚÀî¿¿É× Lorentz ·²¤Îɽ¸½¤Î intertwining operator ¤Ë¤Ä¤¤¤Æ
²¬ËÜÀ¶¶¿ Ä´Ï·Á¼°¤Î¥Ý¥¢¥½¥óɽ¼¨¤Ë¤Ä¤¤¤Æ
²Ï¹çδ͵ ¥³¥Û¥â¥í¥¸¡¼·²¤Î͸ÂÀ¤Ë¤Ä¤¤¤Æ¤Î´ðËܸ¶Íý
Ê¿°æ Éð Ⱦñ½ã¥ê¡¼·²¾å¤ÎÉÔÊѸÇÍĶȡ¿ô
º´Æ£´´É× Â¿ÍÍÂξå¤Î²òÀϳؤˤĤ¤¤Æ¤Î¼ã´³¤Î¹Í»¡
Çð¸¶Àµ¼ù ²¬ËÜͽÁۤˤĤ¤¤Æ
1972(¾¼47)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1972.Feb.5-7 ) ¾ëºê²¹Àô À¤ÏÃ¿Í ²¬ËÜÀ¶¶¿
ÀÄËÜÏÂɧ Weyler ¤ÎÍýÏÀ¤Ë¤Ä¤¤¤Æ
ÀîÃæÀëÌÀ ͸ Chevalley ·²¤Î´ûÌó»ØÉ¸¤Ë¤Ä¤¤¤Æ
¹¾¸ýÀµ¹¸ Âоζõ´Ö¾å¤ÎµÞ¸º¾¯´Ø¿ô¤Î Fourier ÊÑ´¹
̶ÅÄÍΰì Schwartz space ¾å¤Î positive definite distribution¤Ë¤Ä¤¤¤Æ
»°Ä»Àî¼÷°ì Cusp ¶õ´Ö¤Î trace form ¤Ë¤Ä¤¤¤Æ
äÇϿɧ Èó¥æ¥Ë¥â¥¸¥å¥é¡¼·²¤Î Plancherel Formula
¿ù±º¸÷É× Í¸Â¼¡¸µ¤Î¥¯¥é¥¹1ɽ¸½¤Î·èÄê
³ª¹¾¹¬Çî ·² Diff(S1) ¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ
ÃÝÃæÌÐÉ× È¡¿ô¶õ´Ö¤Î¡ÖÂ礤µ¡×¤È ¦Å-¥¨¥ó¥È¥í¥Ô¡¼
¡ÖGlobal Analysis¡×¥·¥ó¥Ý¥¸¥¦¥à 1972 March 27-30 ·øÅÄ À¤ÏÿͰËÀª´´(¾¶)
²¬ËÜÀ¶¶¿ ¥Ù¥¯¥È¥ë¥Ð¥ó¥É¥ëÃÍÄ´Ï·¿¼°¤ËÂФ¹¤ë¥Ý¥¢¥Ã¥½¥óÀÑʬ¤Ë¤Ä¤¤¤Æ
ÃÓÅÄ ¾Ï ´ú¿ÍÍÂξå¤Î¢ß-ºîÍÑÁÇ¤È Dirac ºîÍÑÁǤδط¸¤Ë¤Ä¤¤¤Æ
ÆüËÜ¿ô³Ø²ñ 1972 April ·ÄØæµÁ½ÎÂç³Ø
ÆÃÊֱ̹é
ÀîÃæÀëÌÀ ͸ Chevalley ·²¤Î´ûÌó»ØÉ¸¤Ë¤Ä¤¤¤Æ(Âå¿ô³Ø)
Âè11²ó¼ÂÈ¡¿ôÏÀ¡¦Âè10²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1972.July12-14) ¿·³ãÂç³Ø(¾¶)
äÇϿɧ Plancherel formula for non-unimodular locally compact groups
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1972.Sept.5-7 ) ±üÆü¸÷ À¤ÏÃ¿Í ´Ý»³¼¢Ìï
ºØÆ£ÀµÉ§ ¥â¥¸¥å¥é¡¼·²¤Îɽ¸½
ÅÚÊý¹°ÌÀ p ¿Ê¿¸µÂΤΥæ¥Ë¥¿¥êɽ¸½
ÌÚ¼ãÉ× ´ûÌ󳵶ѼÁ¥Ù¥¯¥È¥ë¶õ´Ö¤ÎʬÎà
ËãÀ¸ÂÙ¹° H.Furustenberg:Boundaries of Lie groups and discrete subgroups¤òÃæ¿´¤È¤·¤Æ
ÌÚÈ¨ÆÆ¹§ ¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ´Ø¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ(¥æ¡¼¥¯¥ê¥Ã¥É¶õ´Ö¤Î¾ì¹ç)
¶¶ÄÞÆ»É§ ¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ´Ø¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ(°ìÈ̤ÎÂоζõ´Ö¤Î¾ì¹ç)
°ÂÆ£ðð°ì¡¦ÅÚÀî¿¿É× Zelobenko:Functions on semisimple Lie groups II (Iz.'69) ¤Î¾Ò²ð
1973(¾¼48)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥æ¥Ë¥¿¥êɽ¸½¤È¤½¤Î±þÍÑ¡×1973.March24-28
¼ò°æ¹¬µÈ ·²¤Î Amenability ¤Èɽ¸½ÏÀ
ºØÆ£ÀµÉ§ ·²¤Î¤¢¤ë¼ï¤ÎÉôʬ·²¤Èñ¹à¥æ¥Ë¥¿¥êɽ¸½
¹¾¸ýÀµ¹¸ Harmonic analysis on some type semisimple Lie group
±ºÀî È¥ ¥Ù¥¯¥È¥ëÃͥݥ¢¥Ã¥½¥óÀÑʬ¤ÈÄ´ÏÂ¥»¥¯¥·¥ç¥ó
ÌÚÈ¨ÆÆ¹§ Ʊ¼¡Ä´Ï¿¹à¼°¤È Borel-Weil ¤ÎÄêÍý
Êö¼¾¡¹° ¼ÂÁжʷ¿¶õ´Ö¾å¤Î Laplacian ¤Î¸ÇÍ´Ø¿ô¤Î¥Ý¥¢¥Ã¥½¥óÀÑʬɽ¼¨
ÀîÃæÀëÌÀ ͸ Chevalley ·²¤Î´ûÌóɽ¸½,´ûÌó»ØÉ¸¤Ë¤Ä¤¤¤Æ
̶ÅÄÍÎ°ì °ìÈÌ Lorentz ·²¾å¤ÎĴϲòÀÏ
ÊÆ»³½Ó¾¼ Limits of discrete series for the Lorentz groups
³ª¹¾¹¬Çî Formal vector fields¤ÎLie´Ä¤Îcohomology¤Ë¤Ä¤¤¤Æ
²¼Â¼¹¨¾´ ²óž·²¤Î¾å¤Î Haar measure ¤Ë¤Ä¤¤¤Æ
ÀîÀ¾·¼°ì De Sitter ·²¤Î°ìÍÍͳ¦É½¸½
ÆüËÜ¿ô³Ø²ñ 1973 April Ω¶µÂç³Ø
ÆÃÊֱ̹é
Ê¿°æ Éð Ⱦñ½ã¥ê¡¼·²¤Î̵¸Â¼¡¸µÉ½¸½¤È»ØÉ¸¤ÎÍýÏÀ(È¡¿ô²òÀϳØ)
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡ÖÅù¼Á¶õ´Ö¤Ë¤ª¤±¤ëĴϲòÀÏ¡× 1973.June 22-29 ËãÀ¸ÂÙ¹°Âåɽ
ËãÀ¸ÂÙ¹° Poisson ɽ¸½¤È compactification
ËãÀ¸ÂÙ¹° Rigidity theorem
·´ ÉÒ¾¼
ÌîËܵ×Éס¦ÃÝÃæÌÐÉ×
ÅÚÀî¿¿É×
»°¾å½Ó²ð
Âè12²ó¼ÂÈ¡¿ôÏÀ¡¦Âè11²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1973.July16-18) ¶å½£¹©¶ÈÂç³Ø (¾¶)
¹¾¸ýÀµ¹¸ Ⱦñ½ã¥ê¡¼·²¤ª¤è¤Ó¤½¤ÎÅù¼Á¶õ´Ö¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹¤ÎÍýÏÀ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°II¡×1973 Sept 10-13(¾¶)
Êö¼¾¡¹° ¥é¥ó¥¯1¤ÎÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍÈ¡¿ô
ÆüËÜ¿ô³Ø²ñ 1973 Oct ²¬»³Âç³Ø
ÆÃÊֱ̹é
²¬ËÜÀ¶¶¿ Âоζõ´Ö¾å¤ÎĴϲòÀÏ(È¡¿ô²òÀϳØ)
Âå¿ô·²¥»¥ß¥Ê¡¼ 1973 Nov 23-26 Åìµþ¶µ°éÂç»³Ãæ¸¦½¤½ê
ÌÚ¼ãͺ¡¢ÀîÃæÀëÌÀÅù
1974 (¾¼49)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1974.Feb. )Ë̶彣»Ô¤á¤«¤ê»³Áñ À¤Ïÿͻ³¸ý ¶Ç
±ºÀî È¥ ¥³¥ó¥Ñ¥¯¥È Lie ·²¾å¤Î heat equation
ÏÆËÜ ¼Â SU(2,1) ¤ÎͶƳɽ¸½¤Î´ûÌóÀ
¶¶ÄÞÆ»É§ Subquotient theorem for SU(2,1)
²¬ËÜÀ¶¶¿¡¦°æ¾å Æ©¡¦ÅÄÃæ À¿ Paley-Wiener ÄêÍý¤Î±þÍÑ
ËÙÅÄÎÉÇ· Discrete series ¤Î multiplicity formula¤Ë¤Ä¤¤¤Æ
»°Ä»Àî¼÷°ì Î¥»¶·ÏÎó¤Îɽ¸½¤ÈÈó¥æ¥Ë¥¿¥ê¼ç·ÏÎó
¿ù±º¸÷É× Î¥»¶·ÏÎó¤Î»ØÉ¸¤Î·×»»
°ÂÆ£ðð°ì ľÀþ¤Î°ì¼¡ÊÑ´¹·²¤ËÂФ¹¤ë Paley-Wiener theorem
»°¾å½Ó²ð Ê£ÁǸÅŵ·²¤ÎÊä·ÏÎó¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°III¡×1974 Feb 4-7(¾¶)
Çð¸¶Àµ¼ù Theory of differential equations with regular-singularity and eigenfunctions of Laplacian of symmetric spaces
²¬ËÜÀ¶¶¿¡¦Êö¼¾¡¹° Âоζõ´Ö¾å¤Î¶³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
ËÙÅÄÎÉÇ· Discrete series ¤È¤¢¤ë¼ï¤ÎÂʱ߷¿ºîÍÑÁÇ
ÆüËÜ¿ô³Ø²ñ 1974 April ÅìµþÂç³Ø
Áí¹ç¹Ö±é
º´Éð°ìϺ Infinitesimal automorphisms of symmetric domains
ÆÃÊֱ̹é
¿·Ã«ÂîϺ ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î¥¼¡¼¥¿È¡¿ô(Âå¿ô³Ø)
Âè13²ó¼Â´Ø¿ôÏÀÂè12²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1974.7/11-13) Ë̳¤Æ»Âç³Ø (¾¶)
¼ò°æ¹¬µÈ Amenable transformation semigroup ¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬÊýÄø¼°¡×1974July22-24
²¬ËÜÀ¶¶¿ Âоζõ´Ö¾å¤Î¶³¦ÃÍÌäÂê
ÂçÅçÍøÍº Âоζõ´Ö¤Ë¤ª¤±¤ë¶³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
²¬ËÜÀ¶¶¿¡¦ÌÚÈ¨ÆÆ¹§¡¦ÅÄÃæ À¿ Intertwining operator ¤ÎͶɽêÀ¤Ë¤Ä¤¤¤Æ
Çð¸¶Àµ¼ù Intertwining operator ¤È¶ËÂç²á¾ê·èÄê·Ï¤Ë¤Ä¤¤¤Æ
º´Æ£´´É× Miclo-local calculus
ÀÄËÜÏÂɧ µåÈ¡¿ô¤ÎÊ£ÁÇÈ¡¿ôÏÀŪ¼è°·¤¤
Êö¼¾¡¹°¡¦ÅÄÃæ À¿¡¦²¬ËÜÀ¶¶¿ ¥é¥ó¥¯1¤ÎÂоζõ´Ö¾å¤Î¥Ç¥£¥ê¥¯¥ìÌäÂê
ÃÝÃæÌÐÉ× functional dimension ¤Ë¤Ä¤¤¤Æ
»°Ä»Àî¼÷°ì Real rank1¤ÎȾñ½ã¥ê¡¼·²¤Ë´Ø¤¹¤ë¤¢¤ë·ÏÎó¤Î´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ
±ºÀî È¥ Èó¥³¥ó¥Ñ¥¯¥È·¿Âоζõ´Ö¾å¤Î Laplacian ¤ÎÊ£ÁǶҤˤĤ¤¤Æ
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1974 ) Â绳¤·¤í¤¬¤ÍÁñ À¤ÏÿÍËãÀ¸ÂÙ¹°
³ª¹¾¹¬Çî Cohomology of Lie algebras of vector fields with coefficients in adjoint representations
¶¶ÄÞÆ»É§ Whittaker Model ¤Ë¤Ä¤¤¤Æ
Æ£¸¶±ÑÆÁ ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ
Æ£¸¶±ÑÆÁ exponential group ¤Î unitary ɽ¸½
¸Åë¸Ï¯ ¼Â Banach ´Ä¤ËÂФ¹¤ë Arens-Royden ¤ÎÄêÍý
·§¸¶·¼ºî Cartan ±¿Æ°·²¾å¤Î Fourier ÊÑ´¹
¹â¶¶Îé»Ê Schmid ¤Î»Å»ö¤Î¾Ò²ð
ËãÀ¸ÂÙ¹° Litvinov ¤Î»Å»ö¤Ë¤Ä¤¤¤Æ
1975(¾¼50)
¿ôÍý¸¦Ã»´ü¶¦Æ±¡ÖÅù¼Á¶õ´Ö¤Ë¤ª¤±¤ëĴϲòÀÏ(II)¡×1975.March17-21
ËãÀ¸ÂÙ¹° Åù¼Á¶õ´Ö¾å¤Î³ÎΨ¾ì¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
Ê¿°æ Éð È¡¿ô¤È¤·¤Æ¤ÎÉÔÊѸÇÍĶȡ¿ô ¤È¤¯¤ËÎ¥»¶·ÏÎó¤Îɽ¸½¤Î»ØÉ¸¸ø¼°
Æ£¸¶±ÑÆÁ ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ
ÂçÆ¦À¸ÅIJí°ì ¼ç·ÏÎóɽ¸½¤Î´ûÌóÀ¤Ë¤Ä¤¤¤Æ
Êö¼¾¡¹° Âоζõ´Ö¾å¤Î¸ÇÍÈ¡¿ô¤Î¶³¦ÃͤÈÀÑʬɽ¼¨
äÇϿɧ Àµµ¬Éôʬ·²¤ËÂФ¹¤ëÁÐÂÐÀ
ÆüËÜ¿ô³Ø²ñ 1975 April ÂçºåÂç³Ø
ÆÃÊֱ̹é
Êö¼¾¡¹° HelgasonͽÁۤȳÎÄêÆÃ°ÛÅÀ·¿ÈùʬÊýÄø¼°(È¡¿ô²òÀϳØ)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°IV¡×1975 April 4-10(¾¶)
Êö¼¾¡¹° Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁÇ¤ÎÆ±»þ¸ÇÍÈ¡¿ô
ÂçÅçÍøÍº ³ÎÄêÆÃ°ÛÅÀ·¿¶³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
ÆüÊÆ¥»¥ß¥Ê¡¼¡ÖÊÝ·¿·Á¼°¤ÎÀ°¿ôÏÀ¤Ø¤Î±þÍÑ¡×
S.Lang, µ×ÊÝÅÄÉÙͺ, L.J.Goldstein, ¿¥Åŧ¹¬, K.-Y.Shih, S.Gelbart, ºØÆ£Íµ, H.Jaquet, ¿·Ã«ÂîϺ, D.Niebur, »³ËÜ˧ɧ, E.Lippa, ÅÚÊý¹°ÌÀ, O.Atkin, ÂÀÅIJíÈþ, °Ë¸¶¹¯Î´, A.Pizer, µÈÅÄ·ÉÇ·, M.Razar, ¾®ÃÓÀµÉ×, K.A.Ribet, J.Coates, »Ö¼¸ÞϺ
Âè14²ó¼Â´Ø¿ôÏÀÂè13²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1975.7/15-17) Ä»¼èÂç³Ø(¾¶)
»°Ä»Àî¼÷°ì ÈùʬÊýÄø¼°¤È´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ô²òÀϤνôÌäÂê¡×(1975 July 29-Aug 1)(¾¶)
´Ø¸ý¼¡Ïº SL(3,R) ¤ÎÂÓµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1975 Oct.6- ) ¿·Êæ¹â²¹Àô À¤ÏÿÍÃÝÃæÌÐÉס¦±ºÀîÈ¥
ÃÝÃæÌÐÉ×
À¶¿å±ÑÉ× Some examples of new forms
ÌÚÈ¨ÆÆ¹§ Intertwining operators and differential equations
Æ£¸¶±ÑÆÁ On the unitary representations of split solvable Lie groups
²¼Â¼Ä¾µ× Cuspidal characters over finite classical groups
»°Ä»Àî¼÷°ì On a multiplicity formula
G.Schiffmann Distribution invariant under the orhtogonal group
G.Schiffmann Weil's representation --- the anisotropic case
¶¶ÄÞÆ»É§ On Whittaker model
ÂçÆ¦À¸ÅIJí°ì On a Paley-Wiener type theorem of de Sitter group
´Ø¸ý¼¡Ïº On the zonal spherical function on SL(3,R)
Ê¿°æ Éð On characters and invariant eigen-distributions
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈùʬÊýÄø¼°¤ÈĶȡ¿ô¡×1975 Dec 17-20(¾¶)
ÌðÌî ´Ä¡¦´Ø¸ý¼¡Ïº Coxeter groups ¤ËÉտ魯¤ë weighted homogeneous polynomial ¤Î micro-local structure (with Appendix on GL(2))
ÂçÅçÍøÍº Âоζõ´Ö¾å¤Î¼ï¡¹¤Î¶³¦¤ËÂФ¹¤ë¶³¦ÃÍÌäÂê
1976(¾¼51)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤Èintertwining operator¡×1976.Feb.16-19(¿ù±º¸÷É×Âåɽ)
̶ÅÄÍΰì De Sitter ·²¾å¤Î Fourier ²òÀϤÈÀ׸ø¼°
G.Schiffmann Intertwining operator and Weil representation
¶¶ÄÞÆ»É§ Sp(n) ¤Î Whittaker model
Êö¼¾¡¹° ¥Ý¥¢¥½¥óÀÑʬ¤ÈÈùʬÊýÄø¼°
¼ò°æ¹¬µÈ Amenable °ÌÁê·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
Ê¿°æ Éð Ⱦñ½ã Lie ´Ä¤Î»ØÉ¸¤Ë¤Ä¤¤¤Æ
¿·Ã«ÂîϺ ɽ¸½¤Î¤â¤Á¤¢¤²¤Ë¤Ä¤¤¤Æ
ÀîÃæÀëÌÀ ͸ÂÂξå¤Î¥æ¥Ë¥¿¥ê·²¤ÎÊ£ÁÇ´ûÌó»ØÉ¸¤Ë¤Ä¤¤¤Æ
äÇϿɧ Åù¼Á¶õ´Ö¤ËÂФ¹¤ëÃ¸Ãæ·¿ÁÐÂÐÄêÍý
ÂçÆ¦À¸ÅIJí°ì Spin(4,1)¾å¤ÎµåÈ¡¿ô¤ÎŸ³«¤Ë¤Ä¤¤¤Æ
Æ£¸¶±ÑÆÁ Exponential group ¤Î holomorphically induced representation ¤Ë¤Ä¤¤¤Æ
»°Ä»Àî¼÷°ì
Ãö¼í ع Translation invariant operator in Lp
ÆüËÜ¿ô³Ø²ñ 1976 April ¶å½£Âç³Ø
ÆÃÊֱ̹é
G.Schiffmann Weil's representation attached to a quadratic form(È¡¿ô²òÀϳØ)
Âè15²ó¼ÂÈ¡¿ôÏÀ¡¦Âè14²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1981July12-14) ÀéÍÕÂç³Ø (¾¶)
²¼Â¼¹¨¾´ Quasi-invariant measures on R¡ç
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1976 Oct 8-11) ÂçÍεù¶È¹¾¥ÎÅ縦½¤¥»¥ó¥¿¡¼ À¤ÏÃ¿Í Êö¼¾¡¹°
ÃÝÃæÌÐÉ×
ÀÄÌÚ ÌÐ ²¼»°³Ñ unipotent ·²¤Î Paley-Wiener ·¿ÄêÍý¤Ë¤Ä¤¤¤Æ
»°¾å½Ó²ð
¹¾¸ýÀµ¹¸ ¥¢¥¤¥¼¥ó¥·¥å¥¿¥¤¥óÀÑʬ¤ÎÁ²¶á¹Ôư¤ÈÂоζõ´Ö¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹
¾¾Ëܽ¤°ì Hyperboloid ¾å¤Î Laplacian ¤Î¸ÇÍÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
ÂçÆ¦À¸ÅIJí°ì De Sitter ·²¤ÎµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ
ÊÆ»³½Ó¾¼ Invariant operators on a group of triangular matrices
¶¶ÄÞÆ»É§ ɽ¸½¤ËÉտ路¤¿ Zeta È¡¿ô¤Ë¤Ä¤¤¤Æ
¾¾°æ À¶ ͸ÂÂå¿ô·²¤Î Green polynomial ¤Ë¤Ä¤¤¤Æ
ËÙÅÄÎÉÇ· ͸ÂÂå¿ô·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ(Deligne-Lusztig ¤Î»Å»ö¤Î¾Ò²ð)
ºØÆ£ÀµÉ§ non-standard analysis
ÆüËÜ¿ô³Ø²ñ 1976 Oct Åìµþ¹©¶ÈÂç³Ø
ÆÃÊֱ̹é
Æ£¸¶±ÑÆÁ Exponential group ¤Î¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼° V¡×1976 Oct 13-16(¾¶)
ÂçÅçÍøÍº¡¦´Ø¸ý¼¡Ïº Harmonic analysis on affine symmetric spaces
ÂçÅçÍøÍº A realization of Riemannian symmetric spaces
1977(¾¼52)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖIndefinite inner product space ¾å¤Ø¤Î amenable group ¤Îɽ¸½¡×(1977 Feb.22-25) ¼ò°æ¹¬µÈÂåɽ
ÂÀÅľº°ì
¼ò°æ¹¬µÈ Unitary representation of amenable group in Krein spaces
ÅÚÀî¿¿É×
ËãÀ¸ÂÙ¹°
Ìî¼δ¾¼ SU(1,1) ¤Î͸ÂÈïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý
äÇϿɧ Compact group ¤Î unitary representation (²òÀâ)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö»ØÉ¸¤ÈÉÔÊѸÇÍĶȡ¿ô¡×(1977 March 15-17) ºØÆ£ÀµÉ§Âåɽ
º´Ìî ÌÐ ÆÃ¼ì¤ÊȾñ½ã¥ê¡¼·²¤Î Plancherel ¸ø¼°
À¶¿åµÁÇ· ¼ÂȾñ½ã Lie ·²¤Îɽ¸½¤È»ØÉ¸¤Ë¤Ä¤¤¤Æ
ËÙÅÄÎÉÇ· Schmid ¤Î»ØÉ¸¤Î´Ø·¸¼°¤Ë¤Ä¤¤¤Æ
ÂçÅçÍøÍº¡¦´Ø¸ý¼¡Ïº Affine symmetric space ¤Ë¤ª¤±¤ë¶³¦ÃÍÌäÂê
Ê¿°æ Éð Î¥»¶·ÏÎó¤Îɽ¸½¤È»ØÉ¸
äÇϿɧ ÉÔÊÑ¥Ù¥¯¥È¥ë¤ò¤â¤ÄÊÄÉôʬ·²
¹¾¸ýÀµ¹¸ Åù¼Á¶õ´Ö¾å¤ÎÈùʬÊýÄø¼°¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖͶɽê²òÀÏ¡×(1977 Apr 8-11)(¾¶)
ÂçÅçÍøÍº¡¦´Ø¸ý¼¡Ïº Âоζõ´Ö¾å¤Î¼ï¡¹¤ÎÆÃ¼ì¸ÇÍÈ¡¿ô¤Ë¤Ä¤¤¤Æ
ÆüËÜ¿ô³Ø²ñ 1977 Oct ÅìµþÍý²ÊÂç³Ø
ÆÃÊֱ̹é
ËÙÅÄÎÉÇ· ͸ÂÂξå¤Î Chevalley ·²¤Î Green ¿¹à¼°¤È Weyl ·²¤Îɽ¸½(Âå¿ô³Ø)
¶¶ÄÞÆ»É§ Reductive Lie ·²¤Îɽ¸½¤Î Whittaker model ¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1977.Oct.13-17)»°½ÅÂç³Ø À¤Ïÿͳª¹¾¹¬Çî
Ìî¼δ¾¼ SU(1,1) ¤Î͸ÂÈïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý
º´Ìî ÌÐ Sp(2,R)¤Î Plancherel formula
»°Ä»Àî¼÷°ì Harish-Chandra ¤Î Plancherel formula¤Ë¤Ä¤¤¤Æ
ÃÓÅÄ ¾Ï¡¦Ã«¸ý ¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍÃÍÌäÂê
ËãÀ¸ÂÙ¹° Special representation ¤Î¼Â¸½
ÈôÅÄÉ𹬠²¹¸ÎÃο· ¥Ö¥é¥¦¥ó±¿Æ°¤ò¤á¤°¤Ã¤Æ
̶ÅÄÍΰì SU(n,1)¤ËÂФ¹¤ë Flensted-Jensen ¤Î spherical functions ¤Ë¤Ä¤¤¤Æ
¾¾ÌÚÉÒɧ The orbits of affine symmetric spaces under the action of minimal parabolic subgroups
´¢»³ÏÂ½Ó Chevalley ·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
1978(¾¼53)
ÆüËÜ¿ô³Ø²ñ 1978 April ̾¸Å²°Âç³Ø
ÆÃÊֱ̹é
ÂçÆ¦À¸ÅIJí°ì µåÈ¡¿ô¤Î Harish-Chandra Ÿ³«¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼° VI¡×1977 June 5-8(¾¶)
ÂçÅçÍøÍº Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤΥ¹¥Ú¥¯¥È¥ë
Âè16²ó¼ÂÈ¡¿ôÏÀ¡¦Âè15²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1983July17-19) Å纬Âç³Ø (¾¶)
ºØÆ£ÀµÉ§ non-standard analysis ¤È¤Ï²¿¤«
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1978.Oct.12-14)²»¸Í¤ÎÀ¥¸Í À¤ÏÿÍËÙÅÄÎÉÇ·
»°¾å½Ó²ð Ê¿°æ¤Î»ØÉ¸¸ø¼°¤Îñ½ã²½
µÈÅÄ·ÉÇ· Æó¼¡·Á¼°¤È Siegel modular form
»³¸ý ¶Ç ²Ä²ò¥ê¡¼·²¤Î Affine ¹½Â¤¤Ë¤Ä¤¤¤Æ
ÅÚÀî¿¿É× Plancherel formula ¤Èɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤÎʬ²ñ
²ÃÆ£¿®°ì p¿ÊÂξå¤ÎÂå¿ô·²¤Î spherical principal series ¤Ë¤Ä¤¤¤Æ
¶¶ÄÞÆ»É§ Selberg trace formula ¤Ë¤Ä¤¤¤Æ
Ìî¼δ¾¼ ¤¢¤ëÉáÊ×Èïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý
ÅÚ°æ±ÑÉ× ¤¢¤ë¼ï¤Î Lie ·²¤Î Weil ɽ¸½¤Ë¤Ä¤¤¤Æ
1979(¾¼54)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈĴϲòÀÏ¡×1979.Aug.27-30 (¿ù±º¸÷É×Âåɽ)
°æ¾å Æ© ͳ¦ÂоÎÎΰè¤Î³Æ¶³¦¤ËÉտ魯¤ë¥æ¥Ë¥¿¥êɽ¸½¤È³Ë´Ø¿ô
¶¶ÄÞÆ»É§ ºÇ¹â¥¦¥¨¥¤¥È¤ò»ý¤Äɽ¸½¤Î¥Û¥¤¥¿¥Ã¥«¡¼¥â¥Ç¥ë
Êö¼¾¡¹° Spherical sections of a homogeneous vector bundle
ÌÚÈ¨ÆÆ¹§¡¦ÅÄÃæ À¿ ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤Î pseudo-laplacian ¤ÎÂç°èŪ ²Ä²òÀ¤Ë¤Ä¤¤¤Æ
¾¾Ëܽ¤°ì ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÀµÂ§É½¸½¤Ë¸½¤ì¤ëÎ¥»¶¥¹¥Ú¥¯¥È¥ë
ÏÆËÜ ¼Â ¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥ó¶õ´Ö¾å¤Î Schrodinger ÊýÄø¼°¤Î´ðËܲò¤Ë¤Ä¤¤¤Æ
̶ÅÄÍÎ°ì ¤¢¤ë¼ï¤Îñ½ã Lie ·²¾å¤Î1¼¡¸µ¤Î K-type ¤ò»ý¤Äµå´Ø¿ô¤È Paley-Wiener ·¿ÄêÍý
²Ïź ·ò Rank1 ¤ÊȾñ½ã Lie ·²¾å¤Î Paley-Wiener ·¿¤ÎÄêÍý
À¾Â¼½ÓÇ· ¸Ç͵åÈ¡¿ô¤ÎÁ²¶áŪµóư¤È Lp(1¡åp<¡ç)²ÄÀÑʬÀ
ÂçÆ¦À¸ÅIJí°ì SO0(n,1)¾å¤ÎµåÈ¡¿ô¤Ë¿ïȼ¤¹¤ë Harish-Chandra µé¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ
ÅÚÀî¿¿É× É½¸½¤Î¥Æ¥ó¥½¥ëÀÑ¤È Plancherel formula ¤Ë¤Ä¤¤¤Æ
º´Ìî ÌÐ The Plancherel formula for Sp(n,R)
»°Ä»Àî¼÷°ì Compact Lie ·²¤Î¥Æ¥ó¥½¥ëÀÑɽ¸½¤Ë¤Ä¤¤¤Æ
¾¾ËÜÌмù SL(2,F)¾å¤ÎÉÔÊÑĶ´Ø¿ô¤ÎüÅÀʬ²ò¤Ë¤Ä¤¤¤Æ
¿·²° ¶Ñ On a decomposability of homogeneous linear system representations of a locally compact group
ÇßÅÄ µü L¡ç(G)¾å¤Î°Üư¤È²Ä´¹¤Ê isometry ¤Ë¤Ä¤¤¤Æ
²Ï¾å ů Mautner ·²¤Î´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ
¼ò°æ¹¬µÈ °ÌÁê·²¤Î§±n¶õ´Ö¤Ø¤Î untary ɽ¸½¤ÎÆÃÀ´Ø¿ô¤Ë¤Ä¤¤¤Æ
ÆüËÜ¿ô³Ø²ñ 1979 Oct µþÅÔÂç³Ø
ÆÃÊֱ̹é
²¼Â¼¹¨¾´ ̵¸Â¼¡¸µ¶õ´Ö¤ÎÊ¿¹Ô°Üư½àÉÔÊѬÅ٤ˤĤ¤¤Æ(È¡¿ô²òÀϳØ)
ÆüÊ©¥·¥ó¥Ý¥¸¥¦¥à 1979 Oct.8-14 Strasbourg Âç³Ø
J.-L.Clerc Transformee de Fourier spherique des espaces de Schwartz
M.Hashizume Whittacker models for representations with highest weights
H.Rubenthaler Espaces vectoriels prehomogenes, sous groupes paraboliques et sl2-triplets
T.Shintani On automorphic forms on a unitary group of order 3
Guillemonat Une extension de la bande critique
M.Mamiuda An integral representation of the Harish-Chandra series associated with spherical functions on SO0(n,1)
J.Y.Charbonnel Formule de Plancherel pour les groupes resolubles connexes
M.Flensted-Jensen L1 boundary values
Y.Muta On the spherical functions with one dimensional K-type and the Paley-Wiener type theorem on some simple Lie groups
H.Leptin On the structure of L1-algebras
M.Eguchi On the Fourier transform for Riemannian symmetric spaces and Cp spaces
M.Cowling On complementary series
M.Kashiwara K-types and asymptotic expansions
M.Duflo Differential operators on symmetric spaces
H.Yoshida Weil's representations and Siegel's modular forms
M.Khalgui Representations des groups de Lie a radial cocompact
H.Matsumoto Espaces riemanniens isotropes et leurs analogues discrets
H.Midorikawa On a Clebsh-Gordan coefficient of a certain tensor product representation
H.Saito On a decomposition of spaces of cusp forms and trace formula of Hecke operators
D.Wigner Lobatchefskii function and cohomology of SL(2)
at Paris VII
N.Tatsuuma Duality for factor spaces
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖStructure and representations of algebraic group¡×1979.Oct.30
F.Bruhat Reductive groups on a local field and group schemes
K.Shinoda On Weil representatopn of Sp2n(Fq)
T.Shoji On the Springer representations of Chevalley groups of type Al, Bl, Cl, Dl, F
S.Matsumoto Orbital decomposition of invariant distributions of SL(2,K)
S.Kato On eigenspaces of a Hecke algebra with respect to a good maximal compact subgroup of a p-adic reductive group
T.Tanisaki Inheritance of some invariant properties under foldings of algebraic groups
N.Iwahori¡¦K.Koike Some generalizations and spplications of Kostant's partition functions
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1979.Nov.26-29)Åò²Ï¸¶²¹ÀôÉßÅç´Û À¤ÏÿÍÀ¶¿åµÁÇ·
¼À¥ ÆÆ Àþ·¿Âå¿ô·²¤Î°ìÍÍʬÉۤˤĤ¤¤Æ
´Ø¸ý¼¡Ïº ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÉÔÊѸÇͶõ´Ö¤Ë¤Ä¤¤¤Æ
ÀÄÌÚ ÌÐ SL(2,R)¤ÎÉáÊ×Èïʤ·²¾å¤Î Paley-Wiener ¤ÎÄêÍý
²Ïź ·ò SU(2,2)¾å¤Î Paley-Wiener ¤ÎÄêÍý
²Ï¾å ů ¤¢¤ë°ø»Òɽ¸½¤Îʬ²ò¤Ë¤Ä¤¤¤Æ
·óÅÄ ¶Ñ Poincare ·²¤Î´ûÌóɽ¸½¤«¤é·è¤Þ¤ë Poincare Ⱦ·²¤Î²ÄÌóÀ¤Ë¤Ä¤¤¤Æ
¶¶ÄÞÆ»É§ ¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤ÎËþ¤¿¤¹ÈùʬÊýÄø¼°
¾¾Ëܽ¤°ì ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÀµÂ§É½¸½¤Ë¸½¤ì¤ëÎ¥»¶¥¹¥Ú¥¯¥È¥ë
·§¸¶·¼ºî ¥³¥ó¥Ñ¥¯¥ÈÅù¼Á¶õ´Ö¾å¤Î Fourier ÊÑ´¹¤ÈÉÔÊÑÈùʬºîÍÑÁǤδðËܲò
³ª¹¾¹¬Çî ¤¢¤ë¼ï¤Î¥Ù¥¯¥È¥ë¾ì¤Î Lie ´Ä¤È¤½¤Î cohomology
ËÙÅÄÎÉÇ· Weyl ·²¤Îɽ¸½
º´Æ£Ç½¹Ô ¤¢¤ë¼ï¤ÎÎ¥»¶·²¤Î̵¸Â¼¡¸µ¥æ¥Ë¥¿¥êɽ¸½
1980(¾¼55)
ÆüËÜ¿ô³Ø²ñ 1980 April
ÆÃÊֱ̹é
¹¾¸ýÀµ¹¸ ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤Î¥Õ¡¼¥ê¥¨²òÀÏ¡½ºÇ¶á¤ÎȯŸ¡½ (È¡¿ô²òÀϳØ)
²¬ËÜÀ¶¶¿ ²ÄÈùʬ¿ÍÍÂξå¤ÎĴϲòÀÏ(´ö²¿³Ø)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼´Ä¡¦Âå¿ô·²¤È¤½¤Î¼þÊÕ¡×(1980 May 29-June 2)(¾¶)
¾®ÃÓÏÂɧ Kac-Moody Lie ´Ä¤È Macdonald type ¤Î¹±Åù¼°
¿¹ÅÄ ½ã Kac ¤Î Graph ɽ¸½ÏÀ¤Î¾Ò²ð Root ¤Î¸øÍý·Ï¤Ë¤Ä¤¤¤Æ
ëºê½ÓÇ· ¥°¥é¥Õ¤Îɽ¸½ÏÀ¤Ë¤ª¤±¤ë Kac ¤Î·ë²Ì¤Î¾Ò²ð
´Ø¸ý¼¡Ïº¡¦À¶¿åÊݹ° Subregular-singularities in a symmetric space
Âè19²ó¼Â´Ø¿ôÏÀÂè18²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1980.Jul 3-5) Ê¡²¬Âç³Ø(¾¶)
·§¸¶·¼ºî Ⱦñ½ã Lie ·²¤Î Riemann-Lebesgue ¤ÎÊäÂê
ÆüËÜ¿ô³Ø²ñ 1980 Oct °¦É²Âç³Ø
ÆÃÊֱ̹é
¸åÆ£¼éË® ¥ê¡¼·²¤Î¶ËÂç¥È¡¼¥é¥¹¤ò¤á¤°¤Ã¤Æ(´ö²¿³Ø)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à (1980.Oct.5-8)Ä»¼è»ÔÇòÅÆ²ñ´Û À¤Ïÿͷ§¸¶·¼ºî
¾¾Ëܽ¤°ì Discrete series for an affine symmetric space
ÂçÅçÍøÍº Ⱦñ½ãÂоζõ´Ö¾å¤ÎĴϲòÀÏ
ÀÄÌÚ ÌРϢ³¼ç·ÏÎóɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤˤĤ¤¤Æ
º£ÌîÂÙ»Ò discrete series ¤Î multiplicity formula ¤Ë¤Ä¤¤¤Æ¡½Spin(2m,1),SU(n,1)¤Î¾ì¹ç¡½¡½
Ê¿°æ Éð unipotent orbital integral ¤Ë¤Ä¤¤¤Æ
³á¸¶ µ£ ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½
Æ£¸¶±ÑÆÁ ²Ä²ò·²¤Ë¤ª¤±¤ë intertwining operator ¤È¤½¤Î±þÍÑ
·óÅÄ ¶Ñ Poincare ·²¤Î´ûÌóɽ¸½¤Î Poincare Ⱦ·²¤Ë´Ø¤¹¤ë²ÄÌóÀ
»³ÅÄ͵»Ë Relative invariants of prehomogeneous vactor spaces and the realization of certain unitary representations
»°Ä»Àî¼÷°ì Âоζõ´Ö¾å¤Î Hardy class ¤Ë¤Ä¤¤¤Æ
Harmonic Analysis on Semisimple Symmetric Spaces (1980. Nov.10 -13) ¿¦¶È·±ÎýÂç³Ø¹» À¤ÏÿÍÂçÅçÍøÍº
An Introduction to Harmonic Analysis on Semisimple Symmetric Spaces
ÂçÅçÍøÍº ½ø,³ÎÄêÆÃ°ÛÅÀ·¿¤ÎÈùʬÊýÄø¼°
´Ø¸ý¼¡Ïº ¥ë¡¼¥È·Ï,¥ê¡¼·²¤Î¹½Â¤
¾¾ÌÚÉÒɧ ·²¤Îʬ²òÄêÍý
ÂçÅçÍøÍº(´Ø¸ý¼¡Ïº) Âоζõ´Ö¤Î¼Â¸½¡¢¼ç·ÏÎóɽ¸½
´Ø¸ý¼¡Ïº Poisson ³Ë,¸ÇÍ´Ø¿ô¤ÎÀÑʬɽ¼¨
ÂçÅçÍøÍº Î¥»¶·ÏÎóɽ¸½
´Ø¸ý¼¡Ïº c-functions
ÂçÅçÍøÍº Fourier ÊÑ´¹¡¦Plancherel ¤ÎÄêÍý
Related Topics
»°¾å½Ó²ð ¤¢¤ëÎ¥»¶·ÏÎó¤Î»ØÉ¸
»³ÅÄ͵»Ë ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÁêÂÐÉÔÊѼ°¤È¤¢¤ë¥æ¥Ë¥¿¥êɽ¸½¤Î¼Â¸½
Çð¸¶Àµ¼ù Kazhdan-Lustig Conjecture
¾¾Ëܽ¤°ì Flensted-Jensen ¤ÎÏÀʸ(Discrete series for semisimple symmetric spaces)¤Î¾Ò²ð
²Ïź ·ò ´ûÌó¤Êɽ¸½¤Î»ØÉ¸¤Ë´Ø¤¹¤ë Atiyah ¤Î lecture note ¤Î¾Ò²ð¤È symmetric space ¤Ø¤Î±þÍÑ
Êö¼¾¡¹° G/K¾å¤Î vector bundle ¤Ø¤Î Poisson ÊÑ´¹
1981(¾¼56)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎĴϲòÀÏ¡×1981.Feb.19-21(¹¾¸ýÀµ¹¸Âåɽ)
°æ¾å Æ© ͳ¦Åù¼ÁÎΰè¤ÎÀµÂ§´Ø¿ô¤«¤é¤Ê¤ë¥Ò¥ë¥Ù¥ë¥È¶õ´Ö¤È¤½¤Î¾å¤Ø¤Îľ¸ò¼Í±Æ
¶¶ÄÞÆ»É§ ¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤È¸ÍÅijʻÒ
ݯ°æ¹§½Ó ̵¸Â¼¡¸µ²óž·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
Êö¼¾¡¹° Åù¼Á¥Ù¥¯¥È¥ë«¾å¤ÎÉÔÊÑÈùʬºîÍÑÁÇ
ÂçÆ¦À¸ÅIJí°ì Lorentz ·²¾å¤Î C-´Ø¿ô
·§¸¶·¼ºî Âоζõ´Ö¾å¤Î Lp ²òÀÏI
¹¾¸ýÀµ¹¸ Âоζõ´Ö¾å¤Î Lp ²òÀÏII
²Ïź ·ò ¼Â rank1¤ÊȾñ½ã Lie ·²¾å¤Î Lp Fourier ²òÀÏ
Ìî¼δ¾¼ Oscillator ·²¤Î Paley-Wiener ·¿ÄêÍý
ÅÚÀî¿¿É× SL(2,k)¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑII
ÆüËÜ¿ô³Ø²ñ 1981 April µþÅÔÂç³Ø
ÆÃÊֱ̹é
äÇϿɧ ¾¦¶õ´Ö¾å¤ÎÃ¸Ãæ·¿ÁÐÂÐÄêÍý(È¡¿ô²òÀϳØ)
Âè20²ó¼Â´Ø¿ôÏÀÂè19²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1981.July16-18) ÉÙ»³Âç³Ø (¾¶)
²Ïź ·ò Ⱦñ½ã¥ê¡¼·²¾å¤Ç¤Î¥Õ¡¼¥ê¥¨²òÀÏ
ÌÚÈ¨ÆÆ¹§ Ⱦñ½ãÂоζõ´Ö¾å¤ÎÉÔÊÑÀÑʬ¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥¢¥Õ¥¡¥¤¥óÂоζõ´Ö¾å¤ÎĴϲòÀÏ¡×1981.July20-23(ÂçÅçÍøÍºÂåɽ)
³á¸¶ µ£ ÈóI·¿·²¤Î Plancherel ¸ø¼°¤Ë¤Ä¤¤¤Æ
²Ï¾å ů ¤¢¤ëC*-ÀܹçÀѤÎɽ¸½¤Îʬ²ò¤Ë¤Ä¤¤¤Æ
ÌÚÈ¨ÆÆ¹§ Ⱦñ½ãÂоζõ´Ö¾å¤Îµ°Æ»ÀÑʬ¤Ë¤Ä¤¤¤Æ
º´Ìî ÌÐ GL(n,C)/GL(n,R)¾å¤ÎÉÔÊÑÂÓµåĶ´Ø¿ô¤È Plancherel ¸ø¼°
¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¤ÎÎ¥»¶·ÏÎóɽ¸½
»°Ä»Àî¼÷°ì ²ÄÌó¤Ê¼ç·ÏÎóɽ¸½¤Ë¤Ä¤¤¤Æ
²£»³Ã¤¼£
±ºÀî È¥ ¶É½êÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
ÂçÅçÍøÍº Âоζõ´Ö¤Î¼ï¡¹¤Î¶³¦¤ÎÂФ¹¤ë¶³¦ÃÍÌäÂê
´Ø¸ý¼¡Ïº Invariant eigendistributions and nilpotent orbits
Çð¸¶Àµ¼ù ɽ¸½ÏÀ¤Ë¤ª¤±¤ëÈùʬÊýÄø¼°
ËÙÅÄÎÉÇ· Weyl ·²¤Îɽ¸½II
¸åÆ£¼éË® ͸¼¡¸µÉ½¸½¤Î͸ÂÉôʬ¤È¤½¤Î±þÍÑ
̶ÅÄÍÎ°ì ¥Ý¥¢¥ó¥«¥ì·²¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹¤Ë¤Ä¤¤¤Æ
¹â¶¶Îé»Ê SU(2)¤Î Clebsch-Gordan ·¸¿ô¤Ë´Ø¤¹¤ë combinatorial relation¤Ë¤Ä¤¤¤Æ
¡ÖȾñ½ã¥ê¡¼·²¤Îɽ¸½¤ÈĴϲòÀϡץµ¥Þ¡¼¥»¥ß¥Ê¡¼(1981.Aug.3-6)¿¦¶È·±ÎýÂç³Ø¹»
Êö¼¾¡¹° Åù¼Á¥Ù¥¯¥È¥ë«¤Ë¤ª¤±¤ëÉÔÊÑÈùʬºîÍÑÁǤδĤι½Â¤
º´Ìî ÌРȾñ½ã·²¤Ë¤ª¤±¤ëWeyl¤ÎÀÑʬ¸ø¼°¤È Harish-Chandra ÊÑ´¹¤Ë¤Ä¤¤¤Æ
ÂçÆ¦À¸ÅIJí°ì ¼ç·ÏÎóɽ¸½¤Î infinitesimal operators
º´Æ£ Ǧ Unipotent variety ¤Î¶³¦¤Ë¤Ä¤¤¤Æ
²ÃÆ£Ëö¹ SU(n,1)¤ÎÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°¤Ë¤Ä¤¤¤Æ
ÆüËÜ¿ô³Ø²ñ 1981 Oct »³¸ýÂç³Ø
ÆÃÊֱ̹é
ÏÆËÜ ¼Â Gauge ·²¤Î unitary ɽ¸½(È¡¿ô²òÀϳØ)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1981.Oct.10-11)¼¯»ùÅçÂç³Ø¶µÍÜÉô À¤Ïÿͼò°æ¹¬µÈ
ÅÚ°æ±ÑÉ× Kac-Moody Lie ´Ä¤Î Verma modules ¤Ë¤Ä¤¤¤Æ
Çð¸¶Àµ¼ù Ⱦñ½ã¥ê-·²¤Îɽ¸½ÏÀ¤ÈÀþ·¿ÊÐÈùʬÊýÄø¼°·Ï(I,II)
ÀÄÌÚ ÌÐ SU(2,n) ¤ÎÈïʤ·²¾å¤Ç¤Î Payley-Wiener ·¿¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
»Þ¾¾ ¹§ ¥³¥ó¥Ñ¥¯¥È·²(Lie ·²¤È¤Ï¸Â¤é¤Ì)¾å¤Î differential calculus
ËãÀ¸ÂÙ¹° Action of simple groups on affine building and related topics
¿ù±º¸÷É× È¾Ã±½ã¥ê¡¼·²¤ÎÃ¸ÃæÁÐÂÐÄêÍý
ÅÚÀî¿¿É× SL2(k) ɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ(²ÄÌó¤Ê¼ç·ÏÎóɽ¸½¤Î¾ì¹ç)
¾¾ËÜÌмù GLn(k) ¾å¤ÎÉÔÊÑĶ´Ø¿ô¤Ë¤Ä¤¤¤Æ
´¢»³ÏÂ½Ó ¸Åŵ·²¤Î Coxeter Îà¤ËÉտ路¤¿¥È¡¼¥é¥¹¤Ë¤Ä¤¤¤Æ
1982(¾¼57)
Âå¿ô¥»¥ß¥Ê¡¼¡Ö¥³¥Û¥â¥í¥¸¡¼¤Èɽ¸½ÏÀ¡×(1982 Aug 9-11)¾ëºê²¹Àô
·Ë ÍøÇ· Derived category ¤È Verdier duality
ëºê½ÓÇ·¡¦ËÙÅÄÎÉÇ· Intersection cohomology ¤È holonomic system
ëºê½ÓÇ· Ê£ÁÇȾñ½ã Lie ´Ä¤Îɽ¸½ÏÀ¤ÈD-²Ã·²¤ÎÍýÏÀ
²ÃÆ£¿®°ì¡¦ËÙÅÄÎÉÇ· Springer ɽ¸½¤È¤½¤Î¼þÊÕ
ËÙÅÄÎÉÇ· The Weyl group as monodromies and nilpotent orbits ¡½ after M.Kashiwara
Àõ°æ¾ÈÌÀ Deligne-Lusztig ¿¹à¼°¤Î Zeta È¡¿ô¤Ë¤Ä¤¤¤Æ
ɽ¸½ÏÀÀçÂæ¥·¥ó¥Ý¥¸¥¦¥à(1982.March29) ÅìËÌÂç³ØÍý³ØÉô
Æ£¸¶±ÑÆÁ
¶¶ÄÞÆ»É§ Whittaker functions on semisimple Lie groups
ËÙÅÄÎÉÇ·¡¦Ã«ºê½ÓÇ· Some topics related to nilpotent orbits
¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøÍº Discrete series for affine symmetric spaces
M.Duflo Construction of a set of irreducible unitary representations of real algebraic Lie groups, sufficiently big to decompose L2(G)
ÆüËÜ¿ô³Ø²ñ 1982 March
¹Ô¼ÔÌÀɧ ͸¤ª¤è¤Ó p- ¿Ê Chevalley ·²¤Î Hecke ´Ä¤ËÉտ路¤¿ Poincare µé¿ô¤È¤½¤Î°ìÈ̲½(Âå¿ô³Ø)
M.Duflo On a conjecture of Michele Vergne on the Poisson-Plancherel formula: the case of complex Lie groups(È¡¿ô²òÀϳØ)
Âè21²ó¼Â´Ø¿ôÏÀÂè20²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1982.July15-17) ´ØÀ¾Ã϶èÂç³Ø¥»¥ß¥Ê¡¼ ¥Ï¥¦¥¹ (¾¶)
¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¾å¤ÎÎ¥»¶·ÏÎóɽ¸½¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈÈó²Ä´¹Ä´Ï²òÀÏ¡×1982.July20-23(¿·²°¶ÑÂåɽ)
ÇßÅÄ µü Sp(m,R)¤ÎÉáÊ×Èïʤ·²¤Îɽ¸½¤È¿ÊÑ¿ô Bessel È¡¿ô
»³ÅÄ͵»Ë Shilov ¶³¦¾å¤Î¥Ù¥¯¥È¥ëÃÍÈ¡¿ô¤È Weil ɽ¸½
´¢»³Ï½ӡ¦ÅÚ°æ±ÑÉ× p-¿Ê Chevalley ·²¤Î¶ËÂç K-¥È¡¼¥é¥¹¤Î¤¢¤ë¶¦ÌòÎà¤Ë¤Ä¤¤¤Æ
¼ã»³Àµ¿Í SU(n,1) (n¡æ2)¤Î compact ¾¦¶õ´Ö¤Ë¤ª¤±¤ë Selberg ·¿ zeta ´Ø¿ô
»Þ¾¾ ¹§ ¥³¥ó¥Ñ¥¯¥È·²¾å¤Î²ÄÈùʬ´Ø¿ô
²ÃÆ£Ëö¹ SU(n,1)¤ÎÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°¤Ë¤Ä¤¤¤Æ
ÂçÆ¦À¸ÅIJí°ì Schrodinger ÊýÄø¼°¤Î¸ÇͲò¤È·²¤Îɽ¸½
²Ïź ·ò Lie ·²¾å¤ÎÁíÏÂË¡
äÇϿɧ (ax+b)·²¤Î Chevalley-¿ù±º·¿Ê£ÁDz½
¶¶ÄÞÆ»É§ ³¬¿ô1Èó¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¾å¤ÎĴϲòÀϤȤ½¤Î±þÍÑ
ݯ°æ¹§½Ó ̵¸Â¼¡¸µ¥æ¥Ë¥¿¥ê·²¤Î Peter-Weyl ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
ɽ¸½ÏÀ¥µ¥Þ¡¼¥»¥ß¥Ê¡¼(1982.Aug20-23)ÂçÄ®»Ô À¤ÏÿͲÏź·ò¡¦Ä»°æ¿·¿Í
±ºÀî È¥ ͸¶À±Ç·²¤È¥é¥×¥é¥·¥¢¥ó¤Î¶³¦ÃÍÌäÂê ¡½¡½ 4¼¡¸µ°Ê¾å¤ÎÂÀ¸Ý¤Î·Á¤ò ²»¤Çݤʬ¤±¤ë¤³¤È¤Ï¤Ç¤¤Ê¤¤¡½¡½
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1982.Nov.17-19) ²Ï¸ý¸Ð ÉٻκùÁñ
¼ã»³ Àµ¿Í Real rank 1¤ÎȾñ½ã Lie ·²¤Î compact ¾¦¶õ´Ö¤Ë¤ª¤±¤ë
Selberg zeta ´Ø¿ô¤Î½ôÀ¼Á¤È¤½¤Î±þÍѤˤĤ¤¤Æ
´Ø¸ý¼¡Ïº Invariant measures on orbits associated to a symmetric pair
³á¸¶ µ£ Heisenberg ·¿·²¤Îɽ¸½ÏÀ
·óÅÄ ¶Ñ ISU(n) ¤ÎÉÔÊÑ¿¹à¼°´Ä
°ËÆ£ÀµÇ· Poisson ¶õ´Ö ¤È discrete ·²¾å¤Î convolution ÊýÄø¼°
¿ù±º¸÷É× Âè°ì¼ï¥ë¡¼¥È·Ï¤È Cartan subalgebra ¤Î¶¦ÌòÎà
»°Ä»Àî¼÷°ì Sp(n,Z) ¤ÎÂʱ߸µ¤Î¶¦ÌòÎà¤Ë¤Ä¤¤¤Æ
ËãÀ¸ÂÙ¹° SU(3.f) ¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
¹¾¸ýÀµ¹¸ Reductive Lie ·²¾å¤Î Eisenstein ÀÑʬ¤ÎÁ²¶áŸ³«¤Ë¤Ä¤¤¤Æ
·§¸¶·¼ºî Riemann Âоζõ´Ö¾å¤Î¤Î Fourier ÊÑ´¹¤ËÂФ¹¤ëHardy-Littlewood-Paley ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
²Ïź ·ò J.Arthur ¤Î»Å»ö¤Î¾Ò²ð¡½¡½Paley-Wiener ·¿¤ÎÄêÍý¤Î²ò·è
1983(¾¼58)
¿ôÍý¸¦¸¦µæ½¸²ñ 1983.Feb22-26(¾¶)
Ê¿°æ É𠲬ËÜ¡¦ºù°æ¤Î O(¡ç),U(¡ç) ¤Î Peter-Weyl ¤ÎÄêÍý¤Î¾Ò²ð
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÎϳطϤȥ꡼·²¤Îɽ¸½ÏÀ¡×1983.June20-22 (²¬ËÜÀ¶¶¿Âåɽ)
°æ°ËÀ¶Î´¡¦ÅÏÊÕ¿°ì Âоζõ´Ö¾å¤Î geodesic flow ¤Î´°Á´ÀÑʬ²ÄǽÀ
ÅÄÃæÍÎÊ¿ Kac-Moody group(Kac-Peterson ¤Î»Å»ö¤Î¾Ò²ð)
ÏÆËÜ ¼Â Basic representations of exteded affine Lie algebras
B.Kostant Gauss-Kummer formula
¾¾Ëܵ׵Á Ⱦñ½ãÂоζõ´Ö¤Î spherical K-type ¤Î¤¢¤ë¼ï¤Î¶ñÂÎŪɽ¼¨¤Ë¤Ä¤¤¤Æ
Ìî¼δ¾¼ A description of a space of holomorphic discrete series by means of the Fourier transform on the Shilov boundary
²Ïź ·ò Atoms and molecules on Riemannian symmetric spaces
¹¾¸ýÀµ¹¸ On the asymptotic behavior of the generalized spherical functions on semisimple Lie groups
Floyd L. Williams Some new results on L2(§¤¡ÀG) multiplicities
ëºê½ÓÇ· ´ú¿ÍÍÂξå¤Î holonomic system ¤Î characteristic cycle ¤È Weyl ·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
²ÃÆ£¿®°ì On the Kazhdan-Lusztig polynomials for affine Weyl groups
Âè22²ó¼Â´Ø¿ôÏÀÂè21²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1983.July22-24) ´ä¼êÂç³Ø (¾¶)
²Ï¾å ů ÈóI·¿É½¸½¤Î´ûÌóʬ²ò¤Ë¤Ä¤¤¤Æ
ÆüËÜ¿ô³Ø²ñ 1983 Sept Áá°ðÅÄÂç³Ø
ÆÃÊֱ̹é
·§¸¶·¼ºî Riemann Âоζõ´Ö¾å¤Î Lp È¡¿ô¤Îµå Fourier ÊÑ´¹¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1983.Nov.16-19)»³Ãæ²¹Àô¤Û¤¯¤ê¤¯Áñ À¤Ïÿͻ°¾å½Ó²ð
À¾»³ µý Tensoring method for semisimple groups
¿¥Åŧ¹¬ Automorphic forms, L-functions, and periods integrals
ÏÆËÜ ¼Â¡¦»³ÅÄ͵»Ë Irreducible decompositions of Fock representations of the Virasoro algebra
ÃÝËܵÁÉ× ¥Ù¥Îí¥ê¡¼´Ä¤ÎʬÎà
³á¸¶ µ£ C*ͶƳɽ¸½¤Ë¤è¤ë¼«Í³·²¤Îɽ¸½
´Ø¸ý¼¡Ïº Remarks on involutions on a root system
̶ÅÄÍΰì Lorentz ·²¤È Euclid Fourier ÊÑ´¹
ÂçÆ¦À¸ÅIJí°ì SL(2,R)¾å¤Î conical distributions
¹¾¸ýÀµ¹¸ SU(1,1)¾å¤Î Paley-Wiener ·¿ÄêÍý¤È Campoli¤Î¾ò·ï
Æ£¸¶±ÑÆÁ
¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¡× 1983 Nov.25- µþÂçÍý³ØÉô
ÍÌÚ ¿Ê¡¦»ûÅÄ »ê ¥Ù¥Îí¡¦²Ä²ò Lie ·²¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½
»°ÎØÅ¯Æó¡¦¿ÀÊÝÆ»É× ¥¢¥Õ¥£¥ó¥ê¡¼´Ä¤Îɽ¸½¤Îʬ´ô§¤ËÂФ¹¤ëÁÐÂÐÀ¤Ë¤Ä¤¤¤Æ
¿¹ÅÄ ½ã Áжʷ¿ Kac-Moody ¥ê¡¼´Ä
Simons ·²¤Îɽ¸½¤ÈÈóÀþ·ÁÊýÄø¼°
¿ùÂô¡¦ÆÁ»³ ´ö²¿³ØÅªÎ̻Ҳ½
µÈÅÄ °ì°Õ²½
²¬ËÜÀ¶¶¿ Einstein-Maxwell ÊýÄø¼°¤Î solution ¤Î¶õ´Ö¤Ë Kac-Moody Lie ·²¤¬ transitive ¤ËºîÍѤ¹¤ë
Ê¿°æ Éð ¥ê¡¼·²¤Îɽ¸½¤È¥ê¡¼´Ä¤Îɽ¸½
¹â¶¶Îé»Ê Lorentz ·²¤Îɽ¸½¤ÈµåÈ¡¿ô
ÏÆËÜ ¼Â Kac-Moody Lie algebra ¤Î character formula
Åù¼Á¶õ´Ö¾å¤ÎĴϲòÀÏ(1983.Dec.19-21)ÅìÂçÍý³ØÉô À¤ÏÿͿù±º¸÷Éס¦¹¾¸ýÀµ¹¸
¶¶ÄÞÆ»É§ Ⱦñ½ã¥ê¡¼·²¾å¤Î¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤ÈÎ̻ҸÍÅijʻҤΥ¹¥Ú¥¯¥È¥ëʬ²ò
´Ö²¼¹îºÈ ³¬¿ô2¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥óÂоζõ´Ö¤ÎÂӵ崨¿ô¤Ë¤Ä¤¤¤Æ
²Ïź ·ò Ⱦñ½ã¥ê¡¼·²¾å¤Î¥Õ¡¼¥ê¥¨¡¦¥Þ¥ë¥Á¥×¥é¥¤¥ä¡¼¤Ë¤Ä¤¤¤Æ
¹¾¸ýÀµ¹¸ ¥Ú¡¼¥ê¡¼¡¦¥¦¥¤¡¼¥Ê¡¼·¿ÄêÍý¤Ë¤ª¤±¤ë¥«¥ó¥Ý¥ê¤Î¾ò·ï¤Ë¤Ä¤¤¤Æ
º´Ê¬ÍøË ñ°Ì±ßÈľå¤Î¥Õ¡¼¥ê¥¨Ä¶´Ø¿ô¤Ë¤Ä¤¤¤Æ
²Ïź ·ò Clozel-Delorme ¤Î Paley-Wiener ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
ÅÚ°æ±ÑÉ× ´ÊÌó²ÄǽÂå¿ô·²¤ÎÂйç¤Ç°ÂÄê¤Ê¶ËÂçÎØ´Ä·²
¶¶ÄÞÆ»É§ ¼«Í³·²ÃͼÌÁü¤Î¤Ê¤¹·²¤Î´ûÌóɽ¸½
¼ã»³Àµ¿Í ¥¬¥¦¥¹¡¦¥¯¥ó¥Þ¡¼¤Î¸ø¼°¤Î¥³¥¹¥¿¥ó¥È¤Ë¤è¤ë¾ÚÌÀ¤Ë¤Ä¤¤¤Æ
Æ£¸¶±ÑÆÁ Exponential Group ¤Î¤¢¤ë¼ï¤ÎÅù¼Á¶õ´Ö¤Ë¤Ä¤¤¤Æ
1984(¾¼59)
ÆüËÜ¿ô³Ø²ñ 1984 April ÂçºåÂç³Ø
ÆÃÊֱ̹é
ÏÆËÜ ¼Â Kac-Moody Lie ´Ä¤Î»ØÉ¸¸ø¼°(´ö²¿³Ø)
´Ø¸ý¼¡Ïº The nilpotent subvariety of the tangent space of a symmetric space(È¡¿ô²òÀϳØ)
Âè23²ó¼Â´Ø¿ôÏÀÂè22²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1984.July24-26) ΰµåÂç³Ø (¾¶)
¶¶ÄÞÆ»É§ Åù¼Á¶õ´Ö¾å¤ÎĴϲòÀϤÈÎÌ»ÒÀÑʬ²Äǽ·Ï
»³¾å ¼¢ Hilbert algebra associated with coadjoint orbits
ÆüËÜ¿ô³Ø²ñ 1984 Oct. ÅìµþÂç³Ø
Áí¹ç¹Ö±é
ËÙÅÄÎÉÇ· ¥Û¥í¥Î¥ß¡¼·Ï¤È¤·¤Æ¤Î Harish-Chandra ÊýÄø¼°
ÆÃÊֱ̹é
ÂçÅçÍøÍº Ⱦñ½ãÂоζõ´Ö¾å¤ÎĴϲòÀÏ(È¡¿ô²òÀϳØ)
ÀîÃæÀëÌÀ °ìÈ̲½¤µ¤ì¤¿ Gelfand-Graev ɽ¸½¤È³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î Gauss ÏÂ(Âå¿ô³Ø)
ÅÚ²°¾¼Çî Virasoro algebra ¤Î Fock ɽ¸½¤ÈÊÐÈùʬÊýÄø¼°(´ö²¿³Ø)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1984.Oct.31-Nov.3) °ËƦĹ²¬²¹Àô ÀéºÐÁñ À¤Ïÿ͵ܺê¹À
»³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤Î generalized Gelfand-Graev ɽ¸½¤Ë¤Ä¤¤¤Æ
²¬ËÜÀ¶¶¿¡¦Âô¹¾Î´°ì¡¦ÅÚ°æ±Ñͺ¡¦ÇÏÅç Àµ Einstein-Maxwell ÊýÄø¼°¤È²ò¤ÎÊÑ´¹·²
ÂçÅçÍøÍº µåÈ¡¿ô¤ÎÁ²¶áµóư¤Ë¤Ä¤¤¤Æ
À¾»³ µý Ⱦñ½ã·²¤Î virtual character module ¤È Weyl ·²¤Îɽ¸½
»³¾å ¼¢ The type of von Neumann algebras associated with a certain transitive groupoid
¾¾ÌÚÉÒɧ Closure relation for orbits on affine symmetric spaces under the action of minimal parabolic subgroups
´¢»³ÏÂ½Ó GLn, SLn, Sp2n¤Î¶ËÂçÎØ´ÄÉôʬ·²¤Î¶¦ÌòÎà¤ÎʬÎà
ÇßÅÄ µü ¸Åŵ Lie ´Ä¤Î¶ÒÎí·²¤Î¶¦íÃÀ¤Èɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤˤĤ¤¤Æ
¾¾Ëܵ׵Á SU(2,2) ¤Ë¤ª¤±¤ë Cohomological Hardy Space
1985(¾¼60)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¾å¤ÎĴϲòÀϤȤ½¤Î±þÍÑ¡×1985.Jan.16-19(°ÂÆ£¾Ò°ìÂåɽ)
Ê¿°æ Éð Lie super-algebra¤Î¡Èunitary"ɽ¸½
ÀÄËÜÏÂɧ Problem of eigenfunction expansion on discrete set
º´Ê¬ÍøË ¼ÂÁжʷ¿Âоζõ´Ö¤Î Fourier ÊÑ´¹
¹ÓÌÚÉÔÆóÍÎ Indecomposable representations with invariant inner product¡½¡½A theory of Gupta-Bleuer
´Ø¸ý¼¡Ïº ¶ÒÎí¸µ¤È Cayley ÊÑ´¹
ÂÀÅÄÂöÌé On nilpotent orbits associated to classical symmetric pairs
ºØÆ£ ËÓ On the associate cycles of modules with highest weight
À¾»³ µý Virtual character module for semisimple Lie groups
»°¾å½Ó²ð Sp(n,R) ¤Î»ØÉ¸¸ø¼°¤ÈÉÔÊѸÇÍĶ´Ø¿ô¤Î»ý¤Á¾å¤²¤Ë¤Ä¤¤¤Æ
¶¶ÄÞÆ»É§ ÀÑʬ²Äǽ¤ÊÎÌ»ÒnÂÎÌäÂê
³ª¹¾¹¬Çî Virasoro algebra ¤Î Fockɽ¸½I
ÅÚ²°¾¼Çî Virasoro algebra ¤Î Fockɽ¸½II
ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ ¤¢¤ë¼ï¤ÎȾñ½ãÂоζõ´Ö¾å¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼°
ÃæÀ¾ ê÷ ÁÇγ»ÒʪÍý³Ø¤Ë¤ª¤±¤ëĶÂоÎÀ¤ÈBRSÂоÎÀ
Âè24²ó¼Â´Ø¿ôÏÀÂè23²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1985.July18-20) Ê¡ÅçÂç³Ø (¾¶)
´Ø¸ý¼¡Ïº Âоζõ´Ö¾å¤Î Poisson ÊÑ´¹¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤Î´ö²¿³ØÅª¼Â¸½¡×1985.July22-25 (»°Ä»Àî¼÷°ìÂåɽ)
¶â¹ÔÁÔÆó °¿¼ï¤Î¥¢¥Õ¥£¥óÂоζõ´Ö¤Î¥³¥ó¥Ñ¥¯¥È²½¤È¤½¤Î±þÍÑ
´Ø¸ý¼¡Ïº Âоζõ´Ö¤Î´ðËÜ·²¤Ë¤Ä¤¤¤Æ¤ÎÃí°Õ
¾¾ÌÚÉÒɧ Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits
²£ÅİìϺ Îã³°¥ê¡¼·²¤Î¼Â¸½¤Ë¤Ä¤¤¤Æ
±×ËÜ ÍÎ p¿ÊÂξå¤Î GSp(2) ¤Î´ûÌó super cuspidal ɽ¸½¤Ë¤Ä¤¤¤Æ
¾®ÃÓÏÂɧ¡¦»ûÅÄ »ê SO,Sp ¤Î͸¼¡¸µÉ½¸½¤Ë¤Ä¤¤¤Æ
Ìî¼δ¾¼ Representations of a solvable Lie group on ¢ßb cohomology spaces
ëºê½ÓÇ· Characteristic varieties of highest weight modules and primitive quotients
ËÙÅÄÎÉÇ· Primitive ideals and the Harish-Chandra equation
Çð¸¶Àµ¼ù
ÂçÅçÍøÍº ¥æ¥Ë¥¿¥ê²½²Äǽ¤Ê Harish-Chandra ²Ã·²¤Îͳ¦À¤Ë¤Ä¤¤¤Æ
»³²¼ Çî Multiplicity free property for generalized Gelfand-Graev representations of semisimple Lie groups
¾¾Ëܵ׵Á Ⱦñ½ã Lie ·²¾å¤Î Whittaker Ķ´Ø¿ô
»°Ä»Àî¼÷°ì ¼ç·ÏÎóɽ¸½¤Î¹ÔÎóÍ×ÁǤËÂФ¹¤ë Constant term ¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖµåĶȡ¿ô¤Ê¤é¤Ó¤Ë¤½¤ì¤Ë¤è¤ë¦ÄĶȡ¿ô¤ÎŸ³«¡×1985Sept10-12 (Ê¿°æ ÉðÂåɽ)
ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ U(4,2)/(U(2)¡ßU(2,2)) ¾å¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼°¤Ë¤Ä¤¤¤Æ
²Ï¾å ů¡¦³á¸¶ µ£ ɽ¸½ÏÀ¤ÈKÍýÏÀ
ÌÚÈ¨ÆÆ¹§ Invariant eigendistribution on the tangent space of semisimple symmetric spaces
º´Ìî ÌС¦N.Bopp Distributions spheriques invariantes sur l'espace semi-simple Gc/GR
Ìî¼δ¾¼ Plancherel theorem for solvable Lie groups acting simply transitively on Siegel domains
Æ£¸¶±ÑÆÁ Exponential group ¤Î orbit method ¤Ë¤Ä¤¤¤Æ
¾¾ËÜÌмù On the unitarizability of irreducible representation of GL(n,k)
»°¾å½Ó²ð SU(p,q) ¤Î»ØÉ¸Åù¼°¤Ë¤Ä¤¤¤Æ
»³¸ý ÆØ On higher-order terms in asymptotic expansions for irreducible characters of semisimple Lie groups
»³²¼ Çî Highest weight vectors for generalized Gelfand-Graev representations of semisimple Lie groups
ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é ÉÙ»³Âç³Ø
ëºê½ÓÇ· Ⱦñ½ãLie·²¤Îɽ¸½¤È´ú¿ÍÍÂξå¤ÎÈùʬÊýÄø¼°·Ï
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1985.Nov.6-9)ÅòÍèÄ®¤ß¤Î¤Á³ØÁñ À¤ÏÿͶ¶ÄÞÆ»É§
Æ£¸¶±ÑÆÁ Exponential group ¤Î monomial ɽ¸½
ÈøÈª¿ÌÀ ̵¸ÂÂоη²¤Î¥æ¥Ë¥¿¥êɽ¸½
¾¾ËÜÌмù GL2(F)¤Î´ûÌóɽ¸½¤Î unitarizability ¤Ë¤Ä¤¤¤Æ
´¢»³ÏÂ½Ó Ä¾¸ò·²¤Î¶ËÂç¥È¡¼¥é¥¹¤Î¶¦ÌòÎà¤ÎʬÎà
¿ÜÆ£À¶°ì Kac-Moody Lie´Ä¤ËÂФ¹¤ë Kazhdan-Lusztig ͽÁۤˤĤ¤¤Æ
ÅÚ°æ±Ñͺ ¥â¥¸¥å¥é¥¤¤Î´ö²¿
À¾»³ µý Hecke ´Ä¤Î»ØÉ¸²Ã·²¾å¤Îɽ¸½
¸ÅÄÅÇî½Ó Lie superalgebra ¤Î¥æ¥Ë¥¿¥êɽ¸½
»³ÅÄ͵»Ë ¥½¥ê¥È¥óÊýÄø¼°¤Î¥¹¡¼¥Ñ¡¼²½¤Ø¤Î»î¤ß
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈóI·¿·²¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½¡×1985.Dec.9-13(³á¸¶µ£Âåɽ)
³á¸¶ µ£ ÈóI·¿·²¤Îɽ¸½ÏÀ
Æ£¸¶±ÑÆÁ ²Ä²ò¥ê¡¼·²¤Îñ¹àɽ¸½¤Ë¤Ä¤¤¤Æ
»³¾å ¼¢ ²Ä²ò¥ê¡¼·²¤Îcharacter¤Èorbit method
Ìî¼δ¾¼ On symmetry of L1(G) for solvable Lie groups
ÈøÈª¿ÌÀ Configuration space and unitary representations of the group of diffeomorphisms
²Ï¾å ů ɽ¸½ÏÀµÚ¤ÓºîÍÑÁÇÏÀ¤Ë¤ª¤±¤ëÄ㼡¥³¥Û¥â¥í¥¸¡¼ÏÀ³µÀâ
ÊÒ»³Îɰì II1·¿¤Î hyperfinite °ø»Ò´Ä¾å¤Î²Ä»»¤Ê²Ä´¹Î¥»¶·²¤ÎºîÍѤ˴ؤ¹¤ëÁÐÂÐÄêÍý
ÂçÆâËÜÉ× ·²¤ÎºîÍѤΠPoisson ¶³¦¤Ë¤Ä¤¤¤Æ
³á¸¶ µ£ Dirac induction of semisimple Lie groups
À¾»³ µý Ⱦñ½ã·²¤Î Discrete series ¤Ë¤Ä¤¤¤Æ
1986(¾¼61)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à µþÂçÍý³ØÉô 1986 Jan 16-18
´Ø¸ý¼¡Ïº D-module ¤Èɽ¸½ÏÀ
ÂçÅçÍøÍº Semisimple symmetric space ¤Î Plancherel ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
ÀÄËÜÏÂɧ Selberg ÀÑʬ¤Ë¤Ä¤¤¤Æ
»°¾å½Ó²ð Ⱦñ½ã¥ê¡¼·²¤ÎÉÔÊѸÇÍĶȡ¿ô¤Ë´Ø¤¹¤ë Shelsted ¤ÎÍýÏÀ
À¾»³ µý Ê£Áǥ꡼·²¤Î»ØÉ¸²Ã·²¤Ë¤Ä¤¤¤Æ
ÌÚÈ¨ÆÆ¹§ Ⱦñ½ãÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬÊýÄø¼°
ÀÄÌÚ ÌÐ
ëºê½ÓÇ· Affine Weyl ·²¤Îɽ¸½¤È D-module
¾¾Ëܵ׵Á Whittaker model
»³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤ÎͶƳɽ¸½¤Ë´Ø¤¹¤ë½ÅÊ£ÅÙÄêÍý¤È¤½¤Î±þÍÑ
ÆüËÜ¿ô³Ø²ñǯ²ñÆÃÊÌ¹Ö±é µþÅÔÂç³Ø
Æ£¸¶±ÑÆÁ ²Ä²ò·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ(´ö²¿³Ø)
Âè25²ó¼Â´Ø¿ôÏÀÂè24²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1986.July22-24) ÌÄÌç¶µ°éÂç³Ø(¾¶)
Ìî¼δ¾¼ Åù¼Á Siegel Îΰè¾å¤Î²òÀÏ³Ø¤È Lie ·²¤Îɽ¸½
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖAnalysis on Homogeneous Spaces and Representations of Lie Groups ( ÂçÅçÍøÍºÂåɽ)
M.Duflo Plancherel theorem and orbit method
M.F.Vergne Index theorem and equivariant cohomology
W.Schmid Comparison of various constructions of representations of representations of semisimple Lie groups
Æ£¸¶±ÑÆÁ¡¦»³¾å ¼¢ Some monomial representations of exponential groups
M.Flensted-Jensen Towards a Paley-Wiener theorem for semisimple symmetric spaces
N.R.Wallach On the condition of moderate growth
J.N.Bernstein On the support of Plancherel measure
°Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØÅ¯Æó¡¦Èø³ÑÀµ¿Í Solvable lattice models
ÅÚ²°¾¼Çî 2 dimensional conformal field theory and representation of braid group
D.A.Vogan The orbit methods and unitary representations
P.J.Sally
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼·²¤Îɽ¸½¤ÈÅù¼Á¶õ´Ö¾å¤Î´Ø¿ô¡×1986.Sept.3-4 (·§¸¶·¼ºîÂåɽ)
ÌÚ¼ãͺ A classification problem of prehomogeneous vector spaces
¿ÜÆ£À¶°ì Groups associated with unitary forms of Kac-Moody algebras
»³²¼ Çî Finite multiplicity theorems for induced representations of semisimple Lie groups and their applications to generalized Gelfand-Graev representations
¼ã»³Àµ¿Í A Paley-Wiener type theorem on symmetric spaces and its applications
¶¶ÄÞÆ»É§ Certain irreducible representations of a group of maps with values in a free group
»°Ä»Àî¼÷°ì On formal degree of principal series representation
Analysis on Homogeneous Spaces and Representations of Lie groups(1986.Sept.5-6) ¹ÅçÂç³ØÍý³ØÉô
M.Duflo Harish-Chandra descent method and character formulae
M.Flensted-Jensen H-spherical (g,K)-modules
K.Okamoto On thegeneralized Geroch conjectur
T.Hirai Construction of irreducible unitary representations of infinite symmetric groups
M.Vergne Equivalent cohomology and characteristic classes
N.Wallach Toda lattices
ÆüËÜ¿ô³Ø²ñ 1986 Sept. ÀéÍÕÂç³Ø
Áí¹ç¹Ö±é
M.Flensted-Jensen Trends in the development of analysis on symmetric spaces
ÆÃÊֱ̹é
¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¾å¤Îµ°Æ»¹½Â¤¤ÈĴϲòÀÏ(È¡¿ô²òÀϳØ)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖD-²Ã·²³µÀâ¡×(1986 Oct 27-29) Çð¸¶Àµ¼ùÂåɽ
Â绳ÍÛ²ð¡¦À¶¿åͦÆó D-²Ã·²ÆþÌç
ëºê½ÓÇ· D-²Ã·²¤È·²¤Îɽ¸½ÏÀ
ºØÆ£À¹É§ D-²Ã·²¤È Hodge ÍýÏÀ
º´Æ£´´É× D-²Ã·²¤ÈÈùʬÊýÄø¼°
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1986.Nov.20-22) ¸Å縦½¤¥»¥ó¥¿¡¼ À¤ÏÿÍÌî¼δ¾¼
¾®ÎÓ½Ó¹Ô Îΰè¤È¤½¤ÎÄêµÁ´Ø¿ô¤Î Fourier-Laplace ÊÑ´¹¤ÎÎíÅÀ½¸¹ç¤Ë¤Ä¤¤¤Æ
´¢»³ÏÂ½Ó ¼Â Cartan Éôʬ´Ä¤Î¶¦ÌòÎà¤ÎʬÎà¤Ë´Ø¤¹¤ë°ìÃí°Õ
ÅÄÃæ¾ÍÊ¿ ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤Î Hausdorff-Young ÄêÍý
³á¸¶ µ£ Î¥»¶¤Ù¤Îí·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
¼¼ À¯Ï ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¾å¤ÎÉÔÊÑĶȡ¿ô
ÇßÅÄ µü ÆÃ¼ìÈ¡¿ô¤Ë¤Ä¤¤¤Æ¤ÎÆÃ¼ì¤Ê»ëÅÀ¡½q-analogue ¤ò¼´¤È¤·¤Æ¡½
¹â°æÇî»Ê ÎôÅù¼Á¶õ´Ö¾å¤Î Baum-Connes ͽÁÛ
¸ÅÄÅÇî½Ó Irreducible unitary representations Lie superalgebras of type A
²Ïź ·ò Fourier transform associated with holomorphic discrete series and a characterization of the discrete part of Lp-functions
1987(¾¼62)
ÆüËÜ¿ô³Ø²ñ 1987 April ÅìµþÂç³Ø
ÆÃÊֱ̹é
À¾»³ µý Ⱦñ½ã Lie ·²¤Î»ØÉ¸²Ã·²¤È Weyl ·²¤ª¤è¤Ó¤½¤Î Hecke ´Ä¤Îɽ¸½(È¡¿ô²òÀϳØ)
Âè26²ó¼Â´Ø¿ôÏÀÂè25²ó´Ø¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1987.July20-22) Ë̳¤Æ»Âç³Ø (¾¶)
º´Ìî ÌРȾñ½ãÂоζõ´Ö¾å¤ÎÎ¥»¶¥¹¥Ú¥¯¥È¥ë¤ò»ý¤ÄÉÔÊÑÂÓµåĶ´Ø¿ô
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¾å¤Î¸ÇÍÈ¡¿ô¤È¥ê¡¼·²¤Îɽ¸½¡×1987.July27-30 (Êö¼¾¡¹°Âåɽ)
º£ÌîÂÙ»Ò Sp(p,q)¤ÎÉÔϢ³Éôʬ·²¤Î cohomology ¤Ë¤Ä¤¤¤Æ
Parthasarathy Unitary highest weight modules
ËÙÅÄÎÉÇ· Character D-modules on a reductive group
¿ÜÆ£À¶°ì Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra
³ª¹¾¹¬Çî Conformal field theory ¤È A·¿ Hecke´Ä¤Îɽ¸½
ÅÚ°æ±ÑÉ× CPn¾å¤Î¼ç«¥È¡¼¥é¥¹´Ô¸µ
¾¾Ëܵ׵Á Whittaker vectors ¤Ë¤Ä¤¤¤Æ
¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøÍº
¾®ÎÓ½Ó¹Ô Âоζõ´Ö¤Î¥Ù¥¯¥È¥ë«¤Ë¼Â¸½¤µ¤ì¤ë¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ
´Ø¸ý¼¡Ïº ¿¹à¼°¤ÎÊ£ÁÇ¥Ù¥¤ÎÀµÂ§²½¤ÈñϢ·ëȾñ½ãÂоζõ´Ö¤Î¼ç·ÏÎó¤Ë¤Ä¤¤¤Æ
¹¾¸ýÀµ¹¸¡¦ÅÄÃæ¾ÍÊ¿¡¦¾®Àô ¿ SL(3,R)¤Î°ìÍÍͳ¦É½¸½¤Ë¤Ä¤¤¤Æ
ÃÝÃæÌÐÉ× Pathwise Projective Invariance of Brownian Motion (& Unitary Representations of SL(2,R))
ÈøÈª¿ÌÀ Hilbert space ¾å¤ÎÄ´Ï´ؿô ¤È Levy Laplacian
ÂçÅçÍøÍº¡¦º´Ê¬ÍøË¡¦¼ã»³Àµ¿Í Âоζõ´Ö¾å¤Î Ehrenpreis ¤Î´ðËܸ¶Íý
º´Ìî ÌÐ Âоζõ´Ö¾å¤Î¹çÀ®ÀѤÎÄêµÁ¤È°ìÄêÍý
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1987.Nov.12-14) ·Ú°æÂô ÆüËÜÂç³Ø¸¦½¤½ê À¤ÏÃ¿Í »Þ¾¾ ¹§
¿ÜÆ£À¶°ì Exponentiability of certain completion of the unitary'orm of a Kac-Moody algebra
ĹëÀî¹À»Ê Affine Lie ´Ä¤Î Spinor ɽ¸½¤Ë¤Ä¤¤¤Æ
ÃæÎ¤ Çî ¥é¥×¥é¥·¥¢¥ó¤Î¶Ò¤¬À¸À®¤¹¤ë1·Â¿ôȾ·²
»³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤ÎÎ¥»¶·ÏÎóɽ¸½¤ÎͶƳɽ¸½¤Ø¤ÎËä¤á¹þ¤ß
»°¾å½Ó²ð ¸Åŵ·²¤Î´ËÁý²Ã¤Ê»ØÉ¸¤ÎÅù¼°¤Ë¤Ä¤¤¤Æ
ëºê½ÓÇ· Hecke algebras and D-modules
°Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØÅ¯Æó¡¦Èø³ÑÀµ¿Í Two remarks on recent development in solvable models
´Ø¸ý¼¡Ïº Invariant systems of differential equations on Siegel's upper half-plane
1988(¾¼63)
ÆüËÜ¿ô³Ø²ñ 1988 April Ω¶µÂç³Ø
ÆÃÊֱ̹é
»³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤Î°ìÈ̲½¤µ¤ì¤¿ Gelfand-Graev ɽ¸½¡½Í¸Â½ÅÊ£ÅÙÄêÍý¤È´ûÌóɽ¸½¤Î Whittaker model¡½ (È¡¿ô²òÀϳØ)
ëºê½ÓÇ· Ⱦñ½ã·²¤Îɽ¸½¤ÈD²Ã·²(Âå¿ô³Ø)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤È¤½¤ÎʪÍýŪ±þÍÑ¡×1988.July18-21 (³ª¹¾¹¬ÇîÂåɽ)
¿ÜÆ£À¶°ì Loop ·²¤Î affine Lie ´Ä¤Ø¤ÎºîÍѤ˴ؤ·¤Æ
ÂÀÅÄÂöÌé ¸Åŵ·¿ Lie ´Ä¤Î admissible ¤Ê¶ÒÎíµ°Æ»¤ÎʬÎà
ÏÆËÜ ¼Â A topic from the representation theory of infinite-dimensional Lie algebras
»°Ä®¾¡µ× Representation theory of quantum groups
¶¶ÄÞÆ»É§ ÆóÉô¼ùÌÚ¾å¤Î Selberg À׸ø¼°¤Ë¤Ä¤¤¤Æ
°Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦¹ñ¾ìÆØÉס¦»°ÎØÅ¯Æó¡¦Èø³ÑÀµ¿Í ²Ä²ò³Ê»ÒÌÏ·¿¤È Weyl-Kac »ØÉ¸¸ø¼°
¼¾å ½ç ²Ä²ò³Ê»ÒÌÏ·¿¤Èɽ¸½ÏÀ
³ª¹¾¹¬Çî P1¾å¤Î CFT ¤È braid ·²¤Î¥â¥Î¥É¥í¥ß¡¼É½¸½
¾®Ìî ·°¡¦¾®ÎÓ½Ó¹Ô Note on Hiruzebruch's proportionality principle
¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøÍº Î¥»¶·ÏÎóɽ¸½¤Î¼ç·ÏÎóɽ¸½¤Ø¤ÎËä¤á¹þ¤ß
Çð¸¶Àµ¼ù D-modules on flag varieties for degenerate infinitesimal characters
´Ø¸ý¼¡Ïº Ⱦñ½ã·²¤Î²Ä´¹¤ÊÂÐ¹çÆ±·¿¤ÈÂоζõ´Ö¤ÎÉôʬ¶õ´Ö
Ìî¼δ¾¼ Use of Jordan structure in harmonic analysis
º´Ìî ÌÐ Âоζõ´Ö¾å¤ÎÂÓµåĶ´Ø¿ô¤Èµ°Æ»ÊýË¡
²¬ËÜÀ¶¶¿ Kac-Moody Lie ·²¤ÎÄê¾ï¼´ÂоΠEinstein-Maxwell ÊýÄø¼°¤Î²ò¤Ø¤ÎºîÍÑ
Âè27²ó¼ÂÈ¡¿ôÏÀ¡¦Âè26²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1988.July21-23)=@²¬»³Âç³Ø (¾¶)
»³ÅÄ͵»Ë ĶÂоÎÈùʬÊýÄø¼°¤ÎÂå¿ôŪ¹½Â¤
ÆüËÜ¿ô³Ø²ñ 1988 Oct. ¶âÂôÂç³Ø
ÆÃÊֱ̹é
ÌÀµ½Ó Î̻ҷ²¤Îɽ¸½¤ÈµåÈ¡¿ô¤Î q-analogue (È¡¿ô²òÀϳØ)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1989.Nov.19-22) ²Ï¸ý¸ÐÉٻκùÁñ À¤Ïÿͻ³ÅÄ͵»Ë
ÂçÅçÍøÍº Asymptotic behavior of Flensted-Jensen's spherical trace functions with respect to spectral parameters
¾®ÎÓ½Ó¹Ô ´ÊÌó·¿Åù¼Á¶õ´Ö¤Ø¤Î¸ÇÍÉÔϢ³¤ÊºîÍÑ
²Ïź ·ò On a global realization of a discrete series for SU(n,1) as applications of Szego operator and limits of discrete series
Èø³ÑÀµ¿Í Path representations of sl^(r,C)Ʊ»þ¸ÇÍÈ¡¿ô
Íî¹ç·¼Ç· Rank1¤ÎÂоζõ´Ö¤ÎÉÔÊÑĶȡ¿ô
¼¨Ìî¿®°ì Riemann Âоζõ´Ö ¤Î line bundle ¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤÎ
¿û ½¤°ì Hermite ÂоÎÂФΠLie ´Ä¤Î´ûÌóºÇ¹â¥¦¥§¥¤¥Èɽ¸½¤Î¹½À®¤Ë¤Ä¤¤¤Æ
Æ£¸¶±ÑÆÁ On monomial representations of exponential solvable Lie groups
À¾»³ µý Oscillator representations and a super dual pair
ÅÄÃæ¾ÍÊ¿ C-´Ø¿ô¤Î determinant ¤Ë¤Ä¤¤¤Æ¡½¡½SL(n,R) case¡½¡½
²¬ËÜÀ¶¶¿¡¦ÃÓÅÄ ¾Ï¡¦¶¶ËÜδ»Ê¡¦²ÏÌîÂÙ¼£ Affine Kac-Moody Lie ·²¤ËÂФ¹¤ë Borel-Weil ÄêÍý
º´Ìî ÌÐ Âоζõ´Ö¤Î Eisenstein ÀÑʬ
¾¾Âô½ß°ì Hirzebruch ¶ÊÌÌ¤Î¥Ö¥í¡¼¥¢¥Ã¥×¤È C ·¿ Weyl ·²
¸¦µæ½¸²ñ¡ÖLie ·²¤Ë¤Ä¤¤¤Æ¡× 1988 Dec.15-16 ²¬»³Íý²ÊÂç³Ø
ĹÌî Àµ Âоζõ´Ö¤Î¹½Â¤ÏÀ
¶â¹ÔÁÔÆó Jordan Âå¿ô¤Ë¤ª¤±¤ë¥·¥ë¥Ù¥¹¥¿¡¼¤Î´·ÀΧ¤È¤½¤Î±þÍÑ
¸ü»³·ò¼¡ Polarity ¤ò¤â¤ÄÂоζõ´Ö²¤Ë¤Ä¤¤¤Æ
Ìî¼δ¾¼ Algebraically independent generators of invariant differential operators on a symmetric cone
¾®ÎÓ½Ó¹Ô Proper action on a homogeneous space of reductive type
¸åÆ£¼éË® Standard Cartan subalgebra ¤Ë¤Ä¤¤¤Æ
1989(¾¼64¡¦Ê¿À®¸µ)
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Öɽ¸½ÏÀ¤Ë¤ª¤±¤ë¶¦Ìò¿ïȼµ°Æ»¤Î¸¦µæ¡×(1989 Feb 22-25) ³á¸¶ µ£Âåɽ
²Ï¾å ů ¥Õ¥©¥ó¥Î¥¤¥Þ¥óÉôʬ´Ä¤Î»Ø¿ô¤Ë´Ø¤¹¤ë´Ô¸µÏÀ
ÈøÈª¿ÌÀ ̵¸ÂÎ¥»¶·²¤ÎͶƳɽ¸½ Intertwining Number Theorem ¤È¤½¤Î±þÍÑ
ÊÒ»³Îɰì Duality for an action of a countable amenable group on an injective factor
ÂçÆâËÜÉ× ¥Û¥í¥Î¥ß¡¼°¡·²¤Î´ÊÌó¤ËÉտ路¤¿C*´Ä¤Ë¤Ä¤¤¤Æ
Æ£¸¶±ÑÆÁ Reciprocite de Frobenius pour des groupes de Lie resolubles exponentiels
³á¸¶ µ£ Induced traces on coaction crossed product C*-algebras
ÆüËÜ¿ô³Ø²ñǯ²ñ ÆüËÜÂç³Ø
Áí¹ç¹Ö±é
M.Gelfand Hypergeometric functions and combinatorics
ÆÃÊֱ̹é
²Ï¾å ů ͸·¿¥Õ¥©¥ó¥Î¥¤¥Þ¥ó´Ä¤ÎÉôʬ´Ä¤Î¹½Â¤¤ª¤è¤Ó·²ºîÍѤˤĤ¤¤Æ
º´Æ£Ê¸¹ ¥¢¥¤¥¼¥ó¥·¥å¥¿¥¤¥óµé¿ô¤Î°ìÈ̲½¤ÈÍÍý¿ôÂξå¤Î¡Öµå¥Õ¡¼¥ê¥¨ÊÑ´¹¡× (Âå¿ô³Ø)
¾åÌî´î»°Íº Èó¥³¥ó¥Ñ¥¯¥ÈÎ̻ҷ² SUq(1,1) ¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½¤Ë¤Ä¤¤¤Æ (Âå¿ô³Ø)
Âè28²ó¼ÂÈ¡¿ôÏÀ¡¦Âè27²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1989.July20-22) ¹°Á°Âç³Ø (¾¶)
¾®ÎÓ½Ó¹Ô È¾Ã±½ãÂоζõ´Ö¾å¤Î¥Ù¥¯¥È¥ë«ÃÍ´Ø¿ô¤Ë¼Â¸½¤µ¤ì¤ë¥æ¥Ë¥¿¥êɽ¸½
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈÆÃ¼ì´Ø¿ô¡×(1989 July 3-6) ¶¶ÄÞÆ»É§Âåɽ
Æ£¸¶±ÑÆÁ Restrictions of unitary representations for exponential groups
°æ¾å½ç»Ò Fourier transforms for affine automorphism groups on Siegel domain
Ìî¼δ¾¼ Algebraically independent generators of invariant differential operators on a symmetric cone
À¾»³ µý OSP(2n,2m,R) ¤Î discrete series ¤Ë¤Ä¤¤¤Æ
µÈÅÄÀµ¾Ï ÀÄËÜ-Gelfand ¤ÎĶ´ö²¿´Ø¿ô¤È K3-¶ÊÌ̤β¤Ë¤Ä¤¤¤Æ
ÀîÃæÀëÌÀ ͸ÂÂξå¤Î reductive ¤ÊÂоζõ´Ö¤Ë¤ª¤±¤ëµå´Ø¿ôÏÀ
µÈÅÄ·ÉÇ· On the unitarizability of principal series representations of p-adic Chevalley groups
H.Rubenthaler Some zeta functions related to certain complex symmetric spaces
ÂçÅçÍøÍº Ⱦñ½ãÂоζõ´Ö¤Î Plancherel ¬Å٤ˤĤ¤¤Æ
ÌÚÈ¨ÆÆ¹§ Âоζõ´Ö¾å¤Î͵åÈ¡¿ô¤Ë¤Ä¤¤¤Æ
Íî¹ç·¼Ç· ÉÔÊÑĶ´Ø¿ô¤Î¤ß¤¿¤¹ÈùʬÊýÄø¼°·Ï¤Ë¤Ä¤¤¤Æ
»³ÅÄ͵»Ë Î̻ҷ²¤Î SUq(n) ¤Îɽ¸½
»Ö¼¹°Ç· Irreducible decompositions of the regular representation of a restricted direct product group
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡ÖÎ̻ҷ²¤È Robinson-Schenste Âбþ¡×
ÍÌÚ ¿Ê Robinson-Schensted Âбþ¤È left cell
²¬ÅÄæâ°ì Wreath ÀѤΠRobinson-Schensted Âбþ
°Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØÅ¯Æó Î̻ҷ² Uq(gl(n,C)) ¤Î q¢ª0 ¤Ç¤Îɽ¸½¤È Robinson-Schensted Âбþ
»ûÅÄ »ê Robinson-Schensted Âбþ¤È¤½¤Î°ì²
¾¾ß·½ß°ì Flag manifold ¤È Robinson-Schensted Âбþ
ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñ ¾åÃÒÂç³Ø
Áí¹ç¹Ö±é
ÅÚ²°¾¼Çî 2¼¡¸µ¶¦·ÁŪ¾ì¤ÎÍýÏÀ¤Ë¤Ä¤¤¤Æ
ÆÃÊֱ̹é
Çð¸¶Àµ¼ù Kac-Moody Lie´Ä¤Ë´Ø¤¹¤ë Kazhdan-Lusztig ͽÁÛ(Âå¿ô³Ø) W.A.Casselman Recent results in geometry, arithmetic, and analysis for Satake compactifications (Âå¿ô³Ø)
¾®ÎÓ½Ó¹Ô Åù¼Á¥Ù¥¯¥È¥ë«¾å¤ÎĴϲòÀϤÈȾñ½ã¥ê¡¼·²¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½ (È¡¿ô²òÀϳØ)
J.Faraut (È¡¿ô²òÀϳØ)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1989.Nov.19-22) ¶á¹¾È¬È¨»Ô ¶á¹¾È¬È¨¹ṉ̃µÙ²Ë¼ À¤ÏÃ¿Í ¼¼ À¯ÏÂ
ºØÆ£ ËÓ Localization of D-modules
»³º¬¹¨Ç· A,B,C,D ·¿¤Î Uq(g) ¤Î PBW-Th ¤Ë¤Ä¤¤¤Æ
¹ñ¾ìÆØÉ× Quantum R-matrix for G2 and a Solvable lattice model in Statistical Mechanics
Èø³ÑÀµ¿Í ¥¹¥Ô¥óɽ¸½¤ËÂбþ¤¹¤ë R-matrix ¤Ë¤Ä¤¤¤Æ
¶¶Ëܸ÷Ì÷¡¦ÎÓ¹§¹¨ Yang-Baxter ÊýÄø¼°¤ÈÎ̻ҰìÈÌÀþ·¿·²¤Îɽ¸½ÏÀ
ÌÀµ½Ó¡¦»°Ä®¾¡µ× Î̻ҷ² GLq(n+1) ¤Î´ûÌóɽ¸½¤Î¹½À®¤ÈÎÌ»ÒÅù¼Á¶õ´Ö SUq(n+1)/SUq(n)
¾®ÃÓÏÂɧ Ar,A~r ·¿¤Î quiver ¾å¤ÎÉÔÊѼ°´Ä¤Ë¤Ä¤¤¤Æ
W.A.Casselman From asymptotic behavior to Plancherel measure
ÂÀÅÄÂöÌé ¸Åŵ·¿ÂоÎÂФζÒÎíµ°Æ»¤ÎÊÄÊñ¤Ë¤Ä¤¤¤Æ
²Ïź ·ò Szego Operators and a Paley-Wiener Theorem
º´Ìî ÌÐ Âоζõ´Ö¾å¤Î Eisenstein ÀÑʬ¤È¤½¤Î±þÍÑ¡½Âоζõ´Ö Gc/G ¾å¤Î Plancherel ¸ø¼°¡½
ÏÂÅÄÎÃ»Ò p ¾å¤ÎÀµÂ§È¡¿ô¤Ë¤Ä¤¤¤Æ
1990(Ê¿À®2)
Âè2²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1990 Jan.8-10 Ä»¼èÂç³Ø
¶¶ÄÞÆ»É§ ¼ùÌÚ¾å¤ÎĴϲòÀÏ
¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¤Ë¤ª¤±¤ëµ°Æ»¤Îµ¹æÉ½¼¨
À¾»³ µý
ÅÄÃæ¾ÍÊ¿ Ⱦñ½ãÂоζõ´Ö¤Î¼ç·ÏÎó¤Î intertwining operator ¤Ë¤Ä¤¤¤Æ
¶¶ËÜδ»Ê Wess-Zumino ¥â¥Ç¥ëÆþÌç
Íî¹ç·¼Ç· Rank 1 ¤ÎÂоζõ´Ö¤ÎµåÈ¡¿ô¤¬Ëþ¤¿¤¹ÈùʬÊýÄø¼°
Ìî¼δ¾¼ Non-inductive linear forms
¾¾ËÜÌмù Zelvinskii ¤Î duality ¤Î explicit formula ¤Ë¤Ä¤¤¤Æ
¾®ÎÓ½Ó¹Ô Åù¼Á¶õ´Ö¤ËÉտ路¤¿Ìµ¸Â¼¡¸µÉ½¸½¤Îʬ´ô§¤ÎÎã
Ãæî·ÇîÇ· ´ú¿ÍÍÂΤË͸µ°Æ»¤ò»ý¤Ä´ÊÌóÉôʬ·²
·§¸¶·¼ºî¡¦¼ã»³Àµ¿Í q ¤Ë±÷¤±¤ë Radon ÊÑ´¹
ÆüËÜ¿ô³Ø²ñ 1990 April ²¬»³Íý²ÊÂç³Ø
ÆÃÊֱ̹é
ÀÄËÜÏÂɧ JacksonÀÑʬ¤È¤½¤ì¤Ë´ØÏ¢¤¹¤ë2,3¤ÎÏÃÂê¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ô·²¤È¤½¤Î¼þÊÕ¡×1990 May28-31(º´Éð°ìϺÂåɽ)
ÂçÅçÍøÍº Harmonic analysis on semisimple symmetric spaces
¾¾ÌÚÉÒɧ Discrete series for semisimple symmetric spaces
¾®ÎÓ½Ó¹Ô Properly discontinuous groups in a non-Riemannian
homogeneous spaces
´Ø¸ý¼¡Ïº Split rank 1 semisimple symmetric spaces and c-functions
Çð¸¶Àµ¼ù Crystal bases of the q-analogue of universal enveloping algebras
ëºê½ÓÇ· Kazhdan-Lusztig conjecture for Kac-Moody Lie algebrs
¹Ô¼ÔÌÀɧ On prehomogeneous vector spaces
A.Borel Generalized modular symbols and cohomology of arithmetic groups
W.A.Casselman Remarks on Satake compactifications
¿¥Åŧ¹¬ Hodge structures and special values of L-functions associated with automorphic forms
°Ë¿á»³ÃεÁ Parahoric subgroups and automorphic forms
¿ûÌî¹§»Ë Jacobi forms and theta liftings
¿åËÜ¿®°ìϺ Special values of L-functions associated with Siegel modular forms
Âè29²óÈ¡´Ø¿ôÏÀ¡¦Âè28²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1990.July18-20) ÅìË̳ر¡Âç³Ø (¾¶)
¿ÜÆ£À¶°ì Kac-Moody Lie·²¤Ë¤Ä¤¤¤Æ
ICM 1990 Kyoto
Invited One-Hour Adresses at the Plenary Sessions
George Lusztig Intersection cohomology Methods in Representation Theory
Invited Forty-Five Minute Adresses at the Session of Lie Groups and Representations
Dan Barbasch Unipotent representations of real reductive groups
Gunter Harder Eisenstein cohomology of arithmetic groups
Masaki Kashiwara Crystallizing the q-analogue of universal enveloping algebras
Olivier Mathieu Classification of simple graded Lie algebras of finite growth
Toshihiko Matsuki Orbits on flag manifolds
Colette Moeglin Sur les formes automorphes de carre integrable
Gopal Prasad Semi-simple groups and arithmetic subgroups
Stephen Rallis Poles of standard L function
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à("Repsresentation Theory of Lie Groups and Lie Algebras") (1990.Aug.30-Sept.3) ²Ï¸ý¸ÐÉٻκùÁñ
T.Kobayashi Discontinuous group in a homogeneous space of reductive groups
N.Wallach Invariant differential operators associated with Hermitian symmetric spaces
G.Heckmann Multivariable hypergeometric functions
O.Mathieu Classification of Harish-Chandra modules for the Virasolo algebra
D.Barbasch Unipotent representations with Iwahori fixed vectors
B.Orsted Spherical distributions on symmetric spaces
A.W.Knapp Intertwining operators into L2(G/H)
E.Kaniuth The Pompeiu problem for groups
R.Lipsman The Penny-Fujiwara Plancherel formula for non-nilpotent Lie groups
H.Fujiwara Plancherel formula for monomial representations
of nilpotent Lie groups
V.F.Molchanov Harmonic analysis on semisimple symmetric spaces of rank one
Short communications
K.Nishyiyama Classicification of super unitary irreducible representation for su(p,q/n)
K.Hasegawa On "broken ZN-symmetric solutions of the Yang-Baxter equation
S.Dzhumadl'daev Virasoro type Lie algebras
H.Ochiai Invariant functions on the space of rank one symmetric spaces
S.Ariki A decomposition of the adjoint representation of Uq(sl2)
K.Suto Towards Kac-Moody Lie groups
A.Bak The K-theory of Kac-Moody Lie groups
A.G.Helminck Some remarks about symmetric varieties
N.Boyom Affine action of solvable Lie groups and conjecture of Milnor
N.X.Hai Exotic Fourier transform and strange dual spaces for Lie groups(nilpotent case)
K.Okamoto Kirillov-Kostant theory and path integrals on coadjoint orbits
R.Penny The Poisson kernel for the Laplace-Beltrami oprators on unbounded, homogeneous domains in Cn
Salamanca-Riba On unitary representations of SO(n,m), regular integral case
J-S.Huan K-bifinite and Z(g)-finite functions
N.Pressley Quantum affine algebras
H.Singh Second order differental equations in Lie groups
N.Shimeno Eigenfunctions of invariant differential operators on U(p,q)/U(p-1,q)
M.Hashizume Selberg trace formula for semiregular bipartite graphs
ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñ ºë¶ÌÂç³Ø
Áí¹ç¹Ö±é
N.Wallach The survey of representation theory
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎĴϲòÀϤȷ²¤Îɽ¸½ÏÀ¡×1990.Nov13-16 (Æ£¸¶±ÑÆÁÂåɽ)
ÇßÅÄ µü Capelli ¹±Åù¼°¤È multiplicity-free actions(joint work with Roger Howe)
¼ã»³Àµ¿Í The characteristic polynomial of certain square root of Laplacian
¶¶ËÜδ»Ê¡¦¾®Ìº°ìÆÁ¡¦²¬ËÜÀ¶¶¿¡¦ß·¹¾Î´°ì¡¦°Â±Ê¾°Ì Kirillov-Kostant theory and path-integrals on coadjoint orbits
¶¶ÄÞÆ»É§ µ÷ΥȾÀµÂ§¥°¥é¥Õ¾å¤Î¥Õ¡¼¥ê¥¨²òÀÏ
Ravshan Ashurov The multiple Fourie Series
¸ÅÄÅÇî½Ó Classification of super unitary irreducible representations for su(p,q/n)
ÆâÆ£ Áï Kac-Moody¥ê¡¼´Ä¤ÎÉôʬ´Ä¤Î·èÄê
ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ U(p,q)/(U(r)¡ßU(p-r,q))¾å¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼°¡½¡½infinitesimal character ¤¬ singular ¤Ê¾ì¹ç
ÌÚÈ¨ÆÆ¹§ Zonal ¿¹à¼°¤Ë¤Ä¤¤¤Æ
¼¨Ìî¿®°ì Âоζõ´Ö¾å¤Î line bundle ¾å¤ÎĴϲòÀÏ
»ûÅÄ »ê ¡ÖN-stable flagÁ´ÂΡפΠaffine ¶õ´Öʬ³ä¤ÎÁȹ礻ÏÀ¤Ø¤Î±þÍÑ
ÍÌÚ ¿Ê Î̻ҷ²¤Î¿ïȼɽ¸½¤Îľ´ûÌóʬ²ò
Ìî¼δ¾¼ Jordan theoretic description of algebraical independent generators of invariant differential operators
°æ¾å½ç»Ò Lp-Fourier transforms for solvable Lie group acting on Siegel domain
¸¦µæ½¸²ñ¡Ö¸½Âå¤ÎÊìÈ¡¿ô¡×(1990 Dec 25-27)Ä»¼èÂç³Ø
ÌÀµ½Ó ¡Ö¸½Âå¤ÎÊìÈ¡¿ô¡×¤Ë¸þ¤±¤Æ
¾¾ËÜÌмù ¶É½êÂξå¤Î°ìÈÌÀþ·Á·²¤Î»ØÉ¸´Ä¤Ë¤ª¤±¤ë duality operation ¤Ë¤Ä¤¤¤Æ
»°Ä®¾¡µ× Î̻ҷ²¤Ë¸½¤ì¤ëľ¸ò¿¹à¼°¤ÎÊìÈ¡¿ôŸ³«¼°¤Î°ÕµÁ¤ò¹Í¤¨¤ë¤¿¤á¤Ë
ÇßÅÄ µü ÉÔÊѼ°ÏÀ¡¦ÆþÌ硦°ÊÁ° =Âè°ì´ðËÜÄêÍý¤Èµ¹æÅªÊýË¡=
¶¶ËÜ´î°ìϯ ÊÝ·¿´Ø¿ôÏÀ(¿ôÏÀ)¤«¤é¸«¤¿Êì´Ø¿ô
¾¾ß·½ß°ì Êì´Ø¿ô¤È¥È¥Ý¥í¥¸¡¼(I)
º´ÃݰêÉ× Êì´Ø¿ô¤È¥È¥Ý¥í¥¸¡¼(II)
¶¶ÄÞÆ»É§ Âӵ崨¿ô¤ÎÊì´Ø¿ô¤ò¤á¤°¤ë2,3¤ÎÏÃÂê
»³ÅÄ͵»Ë ÈóÀþ·Á¸½¾Ý¤Î²òÌÀ¤ËÊì´Ø¿ô¤Ï¹×¸¥¤Ç¤¤ë¤«
ËÙÅÄÎÉÇ· Gelfand ¤Î°ìÈÌĶ´ö²¿·¿ÈùʬÊýÄø¼°¤òÇÁ¤¯
´äºê¹î§ ÈùʬÊýÄø¼°¤ÈÊì´Ø¿ô = ÊÑ·ÁÍýÏÀ¤ÎÏÃÂ꤫¤é =
1991(Ê¿À®3)
ÆüËÜ¿ô³Ø²ñ 1991 April ·ÄØæµÁ½ÎÂç³Ø
ÆÃÊֱ̹é
³ª¹¾¹¬Çî Birman-Wenzl-Murakami Âå¿ô¤Îɽ¸½¤Î¹½À®Ë¡(È¡¿ô²òÀϳØ)
Âè30²ó¼ÂÈ¡¿ôÏÀ¡¦Âè29²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1991.July17-19) ÂçºåÉÜΩÂç³Ø(¾¶)
¼ã»³Àµ¿Í Î̻ҷ²¾å¤Î¡ÈÄê¿ô·¸¿ôÈùʬºîÍÑÁÇ"
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤Î·²¤Îɽ¸½¤Ë´Ø¤¹¤ëºÇ¶á¤ÎÏÃÂê¡×1991.July 23-26 (À¾»³ µýÂåɽ)
O.Mathieu Bicontinuity of the Dixmier map
²Ïź ·ò A relation between the logarithmic derivatives of Riemann and Selberg zeta functions and a proof of the
Riemann hypothesis under an assumption on a discrete subgroup of SL(2,R)
ËÙ Àµ Andrianov's L-functions associated to Siegel wave forms of degree two
ݯËÜÆÆ»Ê Extension of Jones' projections
¾åÌî·ò¼¤ Infinitesimal deformation of principal bundles, determinant bundles and sffine Lie algebras
K.C.Misra
¹õÌÚ ¸¼ Fock space representations of twisted affine Lie algebras
¾¾Èø ¸ü Âӵ崨¿ô¤Ë´Ø·¸¤¹¤ë²ÄÀÑʬÀܳ¤Ë¤Ä¤¤¤Æ
ÆâÆ£ Áï Kostant's formula for a certain class of generalized Kac-Moody algebras II
ϲÀɧ ̵¸Â¼¡¸µ¥°¥é¥¹¥Þ¥ó¿ÍÍÂΤòÍѤ¤¤¿¥â¥¸¥å¥é¥¹¶õ´Ö¤Î¹½À®
B.L.Feigin Representations of Kac-Moody algebras for critical value of central charges
»³º¬¹¨Ç· (Restricted)quantized enveloping algebras of simple Lie superalgebras and universal R-matrices
±§Âô ã Real moment maps
¶¶ËÜδ»Ê¡¦ß·¹¾Î´°ì A construction of solution of the Ernst equations
Êö¼¾¡¹° Åù¼Á¥Ù¥¯¥È¥ë«¤ÎµåÀÚÃÇ
ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é Ë̳¤Æ»Âç³Ø
¶¶ÄÞÆ»É§ ¥°¥é¥Õ¤Î¥¹¥Ú¥¯¥È¥ë´ö²¿¡½¡½¥»¥ë¥Ð¡¼¥°·¿À׸ø¼°¤È¤½¤Î±þÍÑ (Âå¿ô³Ø)
ÇßÅÄ µü 100ǯÌܤΠCapelli identity(È¡¿ô²òÀϳØ)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1991.Nov.23-26)»°Ä«²¹Àô²ñ´Û À¤Ïÿͼ㻳Àµ¿Í
¿ù±º¸÷É× The Origins of Infinite Dimensional Unitary Representations of Lie Groups
Íî¹ç·¼Ç· Character and Character Cycle
ºØÆ£ ËÓ Parameter Shift in Normal Generalized Hypergeometric Systems
Ìî¼δ¾¼ Manifold of primitive idenpotents in a Jordan-Hilbert algebra
»³¾å ¼¢ Frobenius Reciprocity in Operator Algebra
´¢»³ÏÂ½Ó Character Formula for Cuspidal Unramified Series
Representations of the Multiplicative Group of Division Algebra over Local Field
¿¥Åŧ¹¬ Cohomology of Discontinuous Subgroups of Q-rank 1 in Sp4( R ) (joint work with J.Schmermen)
¾®ÌÚÁ¾³ÙµÁ ¤¢¤ë¼ï¤Î¡Èq-³µ¶Ñ¼Á¶õ´Ö"¤Î°ì¹Í»¡¤Ë¤Ä¤¤¤Æ(ÁýÅÄůÌé¤È¤Î¶¦Æ±¸¦µæ)
¹õÀîµ®»Ê Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǴĤˤĤ¤¤Æ
»³ÅÄ͵»Ë Hall-Littlewood ¿¹à¼°¤È¥½¥ê¥È¥óÊýÄø¼°¤Ë´Ø¤¹¤ëÃí°Õ
»°Ä®¾¡µ× Yang-Baxter ÊýÄø¼°¤Èq-º¹Ê¬ÊýÄø¼°
¸¦µæ½¸²ñ¡ÖÉÔÊѼ°ÏÀ¤Î¿·¤·¤¤Î®¤ì¡×1991 Dec 16-18 ÂçºåÂç³Ø À¤ÏÿÍëºê½ÓÇ·
ÇßÅÄ µü ÉÔÊѼ°¤ÈÁÐÂÐÀ
ËÙÅÄÎÉÇ· Equivariant D-modules --- examples
¼ã»³Àµ¿Í Î̻ҷ²¾å¤ÎÄê¿ô·¸¿ôÈùʬºîÍÑÁÇ¤ÎÆ³Æþ¤È Capelli ¹±Åù¼°
»°Ä®¾¡µ× Holonomic q-difference systems and Yang-Baxter equation
¹õÌÚ ¸¼ Applications of the Fock space representations of twisted affine Lie algebras
ÄÍÅĽÕͺ ĺÅÀºîÍÑÁÇÂå¿ô¤Ë¤Ä¤¤¤Æ
¹Ô¼ÔÌÀɧ ÉÔÊѼ°ÏÀ¤Ë¤ª¤±¤ë¤¤¤¯¤Ä¤«¤ÎÏÃÂê
´Ø¸ý¼¡Ïº ȽÊ̼°¤ÎÊ£ÁÇ¥Ù¥¤ÈÂӵ崨¿ô¤Î¹½À®
ÌÀµ½Ó ÎÌ»ÒÅù¼Á¶õ´Ö¤È Macdonald ¿¹à¼°
¾®¿ÜÅIJí Î̻ҷ²¤Î¤¢¤ë¥Æ¥ó¥½¥ëÀÑɽ¸½¤ÎÃæ¿´²½´Ä
1992(Ê¿À®4)
Âè3²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× Ä»¼èÂç³Ø
¾¾ÌÚÉÒɧ H¡ÀG/P¤Îµ¹æÉ½¼¨
ÆâÆ£ Áï GKM algebra¤Ë¤Ä¤¤¤Æ
°æ¾å½ç»Ò Lp FourierÊÑ´¹¤Ë¤Ä¤¤¤Æ
»Ö¼¹°Ç· Èó²Ä´¹ Hibert¶õ´Ö¤ÎľÀÑʬ¤Ë¤Ä¤¤¤Æ
¼ã»³Àµ¿Í q-analogue of differential operators of constant coefficients
»°Ä»Àî¼÷°ì Harish-Chandra ¤ÎPlancherel formula¤Ë¤Ä¤¤¤Æ
¶¶ÄÞÆ»É§¡¦»ÔÀî Random walks on distance-regular graphs
ÆüËÜ¿ô³Ø²ñ 1991 April Ê¡²¬Âç³Ø
Áí¹ç¹Ö±é
ÀÄËÜÏÂɧ "Ķ´ö²¿È¡¿ô¡¢¤½¤Î²áµî¡¢¸½ºß¡¢¤½¤·¤Æ¡¦¡¦¡¦"
Âè31²ó¼ÂÈ¡¿ôÏÀ¡¦Âè30²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à(1992.July12-14) =@ÅìµþÍý²ÊÂç³Ø (¾¶)
À¾»³ µü ÈùʬºîÍÑÁǤˤè¤ë¥ê¡¼´Ä¤Îɽ¸½¤Î¼Â¸½
ÃæÎ¤ Çî ¥ê¡¼Âå¿ô¤Î*-ɽ¸½¤ÎÀÑʬ²ÄǽÀ¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½ÏÀµÚ¤ÓÅù¼Á¶õ´Ö¾å¤Î²òÀÏ¡×1992.July.21-24 (ÌÚÈ¨ÆÆ¹§Âåɽ)
»³²¼ Çî Some aspects of representations and algebraic geometry of Lie algebras
º´Ìî ÌÐ Âоζõ´Ö¤Ë¤ª¤±¤ë Derived Character ¤ÈĴϲòÀϤؤαþÍÑ
¶¶ËÜδ»Ê Kirillov-Kostant theory and Feynman path integrals on
coadjoint orbits of certain real semisimple Lie group
ß·¹¾Î´°ì A relation between the conformal factor in the Einstein's vacuum equations and the central extension of a formal loop group
Ê¿°æ Éð ²ÄÈùʬ¼ÌÁü·²µÚ¤Ó̵¸ÂÂоη²¤Î¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ
°Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦Èø³ÑÀµ¿Í Crystal base and q-vertex operators
ĹëÀî¹À»Ê Crossing symmetry in elliptic solutions of the Yang-Baxter equation and a new L-operator for Belavin's solution
ã·Æ£ ËÓ Holonomicity and irregularity of inhomogeneous generalized hypergeometric systems
º´¡¹ÌÚÉ𡦹⻳¿®µ£¡¦µÈÅÄÀµ¾Ï¡¦¾¾ËÜ·½»Ê Monodromy of the hypergeometric differential equation of type (k,n)
´î¿ÄÌÉð On the Wronskian of the hypergeometric functions of type (n+1,m+1)
¶â»Ò¾ù°ì q-Selberg ÀÑʬ¤È Macdonald ¿¹à¼°
»°Ä®¾¡µ× Holonomic q-difference system of the first order associated with a Jackson integral of Selberg type
´Ø¸ý±Ñ»Ò Ⱦñ½ãÂоζõ´Ö¤Î Casimir ºîÍÑÁÇ¤ÎÆ°·ÂÀ®Ê¬
ÆâÆ£ Áï Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras
Âè37²óÂå¿ô³Ø¥·¥ó¥Ý¥¸¥¦¥à 1992 July 28-31 ̾¾ëÂç³Ø
¼ã»³Àµ¿Í Î̻ҷ²¾å¤ÎÈùʬ³Ø¤È¤½¤Î±þÍÑ
ÈôÅÄÉ𹬡¢º´Æ£Ê¸¹¡¢·óÅÄÀµ¼£Â¾
¸¦µæ½¸²ñ¡Ö¸½¾Ý¤È¤·¤Æ¤ÎÁÐÂÐÀ¡×(1992 Aug 4-6)È¡´ÛÅò¥ÎÀî²¹Àô˧ÌÀÁñ
ÇßÅÄ µü ÁÐÂÐÀ¤È¤¤¤¦¸½¾Ý
À¹ÅÄ·òɧ ¥é¥ó¥À¥à¤Ê¸½¾Ý¤Ë¤ª¤±¤ëÁÐÂÐÀ
º´Æ£Ê¸¹ ÁÐÂÐÀ¤ò±Û¤¨¤¿´Ø¿ôÅù¼°
ϲÀɧ Èó²Ä´¹²½¤Ëȼ¤¦ÁÐÂÐÀ¤Î¤¢¤ê¤«¤¿
Íî¹ç·¼Ç· Duality ¤È Symmetry
¹â»³¿®µ£ ÅÀ½¸¹ç¤Î·×»»´ö²¿³Ø
µÈÅÄÀµ¾Ï¡¦¾¾ËÜ·½»Ê Gauss-Schwarz ÍýÏÀ¤Ï¡¢¤É¤¦¤¤¤¦ÁÐÂÐÀ¤Ê¤Î¤«
¹õÀî¿®½Å ¾ì¤È¥¼¡¼¥¿=¸ßÀ¤Î¸«ÃϤ«¤é=
ÌÊë°ÂÃË Í¸ÂÁÐÂÐÀ¤È̵¸ÂÁÐÂÐÀ¤Î¸ò¤ï¤ê
ÆüËÜ¿ô³Ø²ñ 1992 Oct ̾¸Å²°Âç³Ø
ÆÃÊֱ̹é
²ÏÌî½Ó¾æ ¶¦·Á¾ìÍýÏÀ¤Ë¤ª¤±¤ë modular ·²¤Îɽ¸½¤È¤½¤Î±þÍÑ(Âå¿ô³Ø)
»°Ä®¾¡µ× Correlation functions associated with a q-Selberg integral(È¡¿ô²òÀϳØ)
¸¦µæ½¸²ñ¡ÖÎ̻ҷ²¤È¤½¤Î¼þÊÕ¡×(1992 Oct.3-5)̾¸Å²°Âç³Ø
½ÂÀîÍÛ°ì Completely Z symmetric R matrix
ĹëÀî¹À»Ê Yang-Baxter ÊýÄø¼°¤Î Belavin ²ò¤ËÉտ魯¤ë Hopf Âå¿ô¤ò¹½À®¤¹¤ë¤¹¤ë»î¤ß
ÉðÉô¾°»Ö Generalized 8 vertex model associated to Sklyanin algebra
ÀÄËÜÏÂɧ¡¦²Ãƣ˧ʸ Connection coefficients for A-type Jackson integral and Yang-Baxter equation
»§Ëà½çµÈ¡¦³á¸¶·ò»Ê Î¥»¶·Ï¤ª¤è¤Ó q-Î¥»¶·Ï¤Ë¤ª¤±¤ë²ÄÀÑʬ·Ï
»³ÅÄÂÙɧ On the q-vertex operator for Uq(sl2)
¿ÀÊÝÆ»É× Quantum affine symmetry in lattice models
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1992.Nov.29-Dec.2)»³·Á¸üÀ¸Ç¯¶âµÙ²Ë¥»¥ó¥¿¡¼ À¤ÏÃ¿Í Ä¹Ã«Àî¹À»Ê
ÌÀµ½Ó¡¦ÇßÅĵü¡¦¼ã»³Àµ¿Í Î̻ҷ²ÈÇdual pair (sl2,on)¤È¤½¤Î Capelli Identity
M.Nazarov Yangian of the queer Lie superalgebras
ÃæÅç ·¼ Instantons on ALE spaces and canonical bases
äª ÃÎÇ·¡¦ÁýÅÄůÌ顦¾åÌî´î»°Íº Spectral analysis of a q-difference operator which arises from the quantum SU(1,1) group
¹¾¸ýÀµ¹¸.ÏÂÅÄÎûҡ¦µÜËÜËãÍý¡¦¾®Àô ¿ On the Harish-Chandra C-function for SU(n,1)
¼¨Ìî¿®°ì The Plancherel formula for spherical functions with a one dimensional K-type on a simply connected simple Lie Group of Hermitian type
»ûÅĽç»Ò Lie superalgebra ¤Îɽ¸½¤È cohomology
ÃÓÅÄ ÊÝ p¿ÊÂå¿ô·²¤Îɽ¸½ÏÀÆþÌç
ÈÓÅÄÀµÉÒ On the orbit decomposition of some affine symmetric spaces
Åì ¿´°ì On a representation of the algebra of invariant
differential operators on a homogeneous vector bundle
ÅÏÊÕ¿°ì Affine base space G/N ¾å¤ÎÈùʬºîÍÑÁǴĤȤ½¤ÎWeyl¼«¸ÊƱ·¿
1993(Ê¿À®5)
¸¦µæ½¸²ñ¡ÖSL2¡×¤Î´ö²¿
ÇßÅÄ µü SL2¤ÈÌ¡Ê⡽MUMBULING ON SL2 ¾åÅÄ ¾¡ µõ¿ô¾èË¡ÏÀ¤È reciprocity law
²ÏÌî ÌÀ Witten ¤Î index theorem ¤Ë¤Ä¤¤¤Æ
²ÏÌî½Ó¾æ¡¦¹âÅÄÉҷá¦ÏÂµ×°æÆ»µ× Representations of modular groups in conformal field theory and 3-manifold invariants
¸¶ÅĹ̰ìϺ SL(2,Z) and the monster simple group À¾ÅĸãϺ ¥Û¥â¥È¥Ô¡¼ÏÀ¤«¤é¸«¤¿ÊÝ·¿·Á¼°
ÅÄÊÕÍýÀµ ͸·²¤ÎʬÎà¶õ´Ö¤Î elliptic cohomology ¤È Thompson series ¤Î p-adic analogue
²ÃÆ£¹¸»Ê conformal field theory ¤È A-D-E classification
ÆüËÜ¿ô³Ø²ñ 1993 March Ãæ±ûÂç³Ø
ÆÃÊֱ̹é
Ìî¼δ¾¼ Jordan Âå¿ô¤È²òÀϳØ(È¡¿ô²òÀϳØ)
R.Howe Multiplicity-free actions in invariant theory(È¡¿ô²òÀϳØ)
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¸Åŵ·²¡¦Hecke´Ä¤Îɽ¸½ÏÀ¤ÈÁȹ礻ÏÀ¡× 1993 May 24-28 (»ûÅÄ »êÂåɽ)
ÇßÅÄ µü Classical and quantum spherical harmonics
¼ã»³Àµ¿Í Quantum dual pair ¤È Capelli ¹±Åù¼°
R.Howe Multiplicity-free action and tensor product
¾®ÎÓ½Ó¹Ô Holomorphic discrete series ¤ÎÆþÌç
ÍÌÚ ¿Ê Higher Specht polynomials
À®À¥ ¹° Hecke ´Ä¤Î Specht module ¤È cell ɽ¸½¤Î´Ø·¸
²ÃÆ£¿®°ì Hecke ´Ä¤È R ¹ÔÎó
·óÅÄÀµ¼£ rank 1 ¤Î quantum algebra ¤Î cohomology ¤Î·×»»¤Î¼ÂºÝ
²¬ÅÄÁï°ì Reflection-extensions of fusion algebras
ÌÀµ½Ó Uq(g) ¤ÎÃæ¿´¸µ¤Îư·ÂÀ®Ê¬¤È Macdonald ¤Î q º¹Ê¬ºîÍÑÁÇ
Âè32²ó¼ÂÈ¡¿ôÏÀ¡¦Âè31²óÈ¡¿ô²òÀÏ³Ø¹çÆ±¥·¥ó¥Ý¥¸¥¦¥à 1993 July 14-16 ¹ÅçÂç³Ø (¾¶)
ÅÚ°æ±Ñͺ ¿¹à¼°¤Î¶Ò¤Ë´ØÏ¢¤·¤¿¥Õ¥é¥¯¥¿¥ë¤Ë¤Ä¤¤¤Æ
Íî¹ç·¼Ç· ¥é¥ó¥¯2¤Î²Ä´¹¤ÊÈùʬºîÍÑÁǷϤˤĤ¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼·²¤Î¹½Â¤¤Èɽ¸½¤Ë´Ø¤¹¤ë½ôÌäÂê¡×1993.July26-29 (¾¾ÌÚÉÒɧÂåɽ)
¹Ô¼ÔÌÀɧ Highest weight modules and b-functions of semi-invariants
»³ËÜÆØ»Ò È¾Ã±½ã¥ê¡¼·²¤Î leading exponent ¤Îµ½Ò
µÆÃÓ¹îɧ ¶ÒÎíLie·²¤ËÉտ魯¤ë Gelfand ÂÐ
°¤Éô¹Í½ç¡¦²£ÅİìϺ ¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¤ÎÂÎÀÑ
¾¾ÌÚÉÒɧ Âå¿ô·²¤Î2¤Ä¤Î involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²ò
ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ U(n,n)/GL(n,C)¾å ¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼°¤Ë¤Ä¤¤¤Æ
¼¼ À¯Ï Îã³°·¿E7¤ÎºîÍѤ¹¤ë³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÆÃ°ÛÉÔÊÑĶ´Ø¿ô
ÈøÈª¿ÌÀ Towards harmonic analysis on Gaussian space
¶¶ËÜδ»Ê¡¦ß·¹¾Î´°ì A central extension of a formal loop group
ÆâÆ£ Áï Towards the Kazhdan-Lusztig multiplicity formula for generalized Kac-Moody algebras
NUS-JSPS Seminar on Representation Theory and Number Theory(1993.Nov.1-4) ÅìµþÂç³Ø
ÂçÅçÍøÍº Continuous famillies of differential operators with symmetries
TAN Eng Chye On the infinitesimal structures of some degenerate principal series representations
¾®ÎÓ½Ó¹Ô Discontinuous groups for pseudo-Riemannian homogeneous spaces
±§Âô ã Moment maps for non-symplectic manifolds, a theorem of Borovoi, and convexity theorems
À¾»³ µý p+-homologies of highest weight modules and their restrictions
ZHU Chengbo On the decay of matrix coefficients of exponential groups
¼ã»³Àµ¿Í Toward an invariant theory for the quantum group symmetry
YOU Yuching On the 2-component KP hierarchy
PENG Tsu Ann Construction of prime tables
ÃæÅç¾¢°ì On Gauss sum characters of finite groups
LIM Chong Hai Congruence subgroups of the Hecke group
¿¥Åŧ¹¬ Whittaker functions on Sp(2,R)
LING San Kernels of degeneracy map between Jacobian of modular curves
Æ£¸¶°ì¹¨
WENG Lin A definition of higher arithmetic K-group
CHAN Shih Ping Associated orders of Lubin-Tate extensions
¹õÀî¿®½Å Zeta functions and multiple sine functions
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1993.Nov.23-26)°ËƦǮÀî¥Ï¥¤¥Ä À¤ÏÃ¿Í ¾®ÃÓÏÂɧ
·§¸¶·¼ºî On non-unitary representations of the Heisenberg group
ÅÏÉô ÈË Generating functions and integral representations for the spherical functions on some classical Gelfand pairs
¿ùëůÌé Î̻ҵåÌ̾å¤Î differential ¤È q-Jacobi ¿¹à¼°
¾®ÎÓ½Ó¹Ô È¾Ã±½ã¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀÆþÌ硽¡½Vogan-ZuckermanƳÍèÈ¡¼ê,Î¥»¶Åª¤Ê¥æ¥Ë¥¿¥êɽ¸½¡½¡½
²¼Â¼¹¨¾´ Configulation space ¾å¤Î measure space ¤È Poisson measure ¤«¤éÀ¸À®¤µ¤ì¤¿ diffeomorphism ¤Î·²¤Îɽ¸½
»³²¼ Çî Gradient ·¿ÈùʬºîÍÑÁÇ,¤Ù¤Îí¶¦ÌòÎà¤ÈȾñ½ã¥ê¡¼·²¤Îɽ¸½¡½¡½Î¥»¶·ÏÎóɽ¸½¤ò¼´¤È¤·¤Æ¡½¡½
1994(Ê¿À®6)
Âè4²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1994 Jan.7-8
ÇßÅÄ µü (GLn,GLm)-duality
»³º¬¹¨Ç· Levendorskii-Soivelman ¤Î¾Ò²ð
ÂçÅçÍøÍº ÂоÎÀ¤ò»ý¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎϳطϵڤÓÎ̻ҷÏI
ÀÖ°æ °ï ÎÌ»ÒÏÀ¤ÎÌëÌÀ¤±
¿ÜÆ£À¶°ì GKM-algebra ¤Î´ú¿ÍÍÂÎ
Íî¹ç·¼Ç· ÂоÎÀ¤ò»ý¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎϳطϵڤÓÎ̻ҷÏII
ÆüËÜ¿ô³Ø²ñ 1994 April ¿À¸ÍÂç³Ø
ÆÃÊֱ̹é
¹Ô¼ÔÌÀɧ ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÍýÏÀ¤ÎºÇ¶á¤ÎȯŸ(Âå¿ô³Ø)
¶¶ÄÞÆ»É§ ̵¸Â¥°¥é¥Õ¤Î¹½Â¤¤È¥¹¥Ú¥¯¥È¥ë(È¡¿ô²òÀϳØ)
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö̵¸Â¼¡¸µ¶õ´Ö¾å¤Î¬ÅÙÏÀ¡¢Ìµ¸Â¼¡¸µ·²¤Îɽ¸½µÚ¤Ó´ØÏ¢¤·¤¿ÏÃÂê¡×(1994 May 17-19) »³ºêÂÙϺÂåɽ
äÇϿɧ Èó²ÄʬÀ¤Î¼è°·¤¤¤Ë¤Ä¤¤¤Æ
²Ïî´ ½ß °ìÍͶõ´Ö¾å¤Î¿ä°Ü³ÎΨ¤ÎÆ±ÄøÅÙ°ìÍÍϢ³À
ÃÝÃæÌÐÉ× °ÂÄê·¿³ÎΨ¾ì¤È¤½¤Î·èÄêÀ
²£°æ²Å¹§ ̵¸Â¼¡¸µ Bargmann ¶õ´Ö¤È white noise ÈÆ´Ø¿ô¤Î¶õ´Ö
ÈøÈª¿ÌÀ Fock ¶õ´Ö¾å¤ÎÎ̻ҳÎΨ²áÄø¡½¥Û¥ï¥¤¥È¥Î¥¤¥º¤Î´ÑÅÀ¤«¤é
Ìø¸¦ÆóϺ ̵¸Â¼¡¸µ¶õ´Ö¾å¤Î¬Å٤ȾðÊóÍýÏÀ
¿åÄ® ¿Î¡¦º´Æ£ ô ·²ºîÍѤˤè¤ë¬ÅÙ¤ÎϢ³À
¹â¶¶ÂÙ»Ì Some results on Bochner-type theorem
²¬ºê±ÙÌÀ Minlos ¤ÎÄêÍý¤ÎµÕ
»³ºêÂÙϺ¡¦»³ºê°¦°ì On the gap distribution of prime numbers
ƶ ¾´¿Í ¥ê¡¼´Ä¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤÎʬ²ò¤«¤éÀ¸¤¸¤ë¥é¥ó¥À¥à¥¦¥ª¡¼¥¯¤Ë¤Ä¤¤¤Æ
À¾»³ µý ¥Ù¥¯¥È¥ë¾ì¤Î¤Ê¤¹ Lie ´Ä¤Î¼«Á³É½¸½¤È¤½¤Î¥Æ¥ó¥½¥ëÀÑɽ¸½¤Ë¤Ä¤¤¤Æ
Ê¿°æ Éð ·²¤Îɽ¸½¤È½àÉÔÊѬÅÙ
ºùËÜÆÆ»Ê Index for factors generated by direct sums of II1 factors
²¼Â¼¹¨¾´ Configuration space ¾å¤Î measure ¤Î¥¨¥ë¥´¡¼¥Éʬ²ò
Âè32²óÈ¡¿ô²òÀϳØÊ¬²Ê²ñ¥·¥ó¥Ý¥¸¥¦¥à(1994.July25)ÄÅÅĽÎÂç³Ø
ÂçÅçÍøÍº ´°Á´ÀÑʬ²Äǽ¤ÊÎ̻ҷÏ
¿ÀÊÝÆ»É× Î̻ҲÄÀÑʬ·Ï¤Î¾õÂÖ¶õ´Ö
Âè33²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1994.July25-27) ÄÅÅĽÎÂç³Ø (¾¶)
°æ¾å½ç»Ò ²Ä²òLie·²¤Îñ¹àɽ¸½¤È¤¢¤ë¼ï¤ÎÁê¸ßΧ¤Ë¤Ä¤¤¤Æ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎÈó²Ä´¹²òÀϳء×1994.Aug.2-5(»³ÅÄ͵»ËÂåɽ)
¾¾ß·½ß°ì E6·¿¶ËÂç¥È¡¼¥é¥¹Éôʬ·²¤È3¼¡¸µ¶ÊÌÌ
ÎÓ ¹§¹¨ II1·¿°ø»Ò´Ä¤Î¥¬¥í¥¢Î̻ҷ²
¾åÌî´î»°Íº¡¦À¾ß·Æ»ÃÎ Î̻ҷ²¤È¥¼¡¼¥¿È¡¿ô
ÂçÅçÍøÍº ºÂɸÂоÎÀ¤ò¤â¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎ̻ҷÏ
Çð¸¶Àµ¼ù¡¦Ã«ºê½Ó¹Ô Kazhdan-Lusztig conjecture for Kac-Moody Lie algebras I,II
ë¸ý·òÆó Minimal K-type Whittaker functions of discrete series of some R-rank 1 Lie groups
µÆÃÓ¹îɧ ²Ä²ò Lie ·²¾å¤ÎKµåÈ¡¿ô¤ÎÀµÄêÃÍÀ
¾¾ÌÚÉÒɧ Âå¿ô·²¤Î2¤Ä¤Î Involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²òII
ÌÀµ½Ó¡¦¿ùëůÌé ¸Åŵ·¿ÂоÎÂФÎÎ̻Ҳ½¤Èq-ľ¸ò¿¹à¼°
ÃÓÅÄ ³Ù ¶¦·Á¾ì¤Î¥³¥»¥Ã¥È¹½À®
¾®Ìº°ìÆÁ¡¦²¬ËÜÀ¶¶¿¡¦¿ûÌî¹ÀÌÀ¡¦ÉÍÅĸ÷¿Í¡¦¸Í±Ûͺ°ìϺ Kirillov-Kostant ÍýÏÀ¤Ë¤è¤ë Kac-Moody Lie ·²¤Îɽ¸½¤Î Feynman ·Ð Ï©ÀÑʬ¤Ë¤è¤ë¹½À®
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¥à¡¼¥ó¥·¥ã¥¤¥ó¤ÈĺÅÀºîÍÑÁÇÂå¿ô¡×(1994 Sept 5-9) µÜËܲíɧÂåɽ
Chogying Dong Introduction to vertex operator algebra I
Hai-sheng Li Introduction to vertex operator algebra II
Yi-Zhi Huang Introduction to vertex operator algebra III
Koichiro Harada¡¦Mong Lung Lang Modular forms associated with the monster module
Bong H.Lian¡¦Gregg J.Zuckerman Moonshine cohomology
Victor G.Kac¡¦Seok-Jin Kang ¼¡¿ôÉÕ¤¥ê¡¼Âå¿ô¤ËÂФ¹¤ë¥È¥ì¡¼¥¹¸ø¼°¤È¥â¥ó¥¹¥È¥é¥à¥¹¡¦¥à¡¼¥ó¥·¥ã¥¤¥ó
ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é1994.Sept.Åìµþ¹©¶ÈÂç³Ø
»³¾å ¼¢ Tensor categories in operator algebras(È¡¿ô²òÀϳØ)
ÆâÆ£ Áï ¥à¡¼¥ó¥·¥ã¥¤¥ó²Ã·²¤È generalized Kac-Moody algebraska (È¡¿ô²òÀϳØ)
²Ïź ·ò Wavelet ÊÑ´¹¤È·²¤Îɽ¸½ÏÀ¡½È¾Ã±½ã Lie ·²¤Î¼ç·ÏÎóɽ¸½¤òÍѤ¤¤¿³ÈÄ¥(¼ÂÈ¡¿ôÏÀ)
Âè30²óɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1994.Nov.16-19)¸â±©¥Ï¥¤¥Ä À¤ÏÿÍÀ¾»³ µý
ºØÆ£¶³»Ê ͸ÂÀ¸À®·²¤Î SL2, GL2 ¤Ø¤Îɽ¸½¤Î characteristic variety /Z
¾®ÎÓ½Ó¹Ô ¶ÊÌ̤ÎÀÑʬ´ö²¿¤ÈÊ£ÁÇÅù¼Á¶õ´Ö¤Î Plancherel ·¿ÄêÍý
G.Schiffmann
¹â¶¶Å¯Ìé p-¿ÊÂξå¤Î GLn ¤Î´ûÌó supercuspidal ɽ¸½¤È¤½¤Î»ØÉ¸
·§¸¶·¼ºî On Hardy-Littlewood-Paley space on Riemannian symmetric spaces
Ê¡Åç±äµ× Chiral Potts ÌÏ·¿¤ËÉտ路¤¿Âå¿ô¤ÈÎ̻ҷ²
ÅÄÃæ½ç»Ò Lie superalgebra sl(2,1) ¤Î homology
²¬ÅÄÁï°ì Littlewood-Richardson ring for Hecke, Brauer, BMW algebras
»°Ä®¾¡µ× Macdonald polynomial as a vector valued character of quantized universal enveloping algebra Un(gl(n))
´¢»³ÏÂ½Ó 4¸µ¿ôÂξå¤Î unitary ·²¤Î tamely ramified supercuspidal ɽ¸½¤Ë¤Ä¤¤¤Æ
¼ã»³Àµ¿Í ¸¶»ÏŪÀ׸ø¼°¤Î±þÍÑ
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ
ÇßÅÄ µü Dual pairs from the quantum invariant theoretic point of view
ÀÐÀî²íͺ Minor summation formulas of Pfaffians and its applications to Schur functions type identities
M.Dijkhuizen (1+n)-parameter deformation of classical symmetric space: a survey of results and open problems
G.Olshanski Harmonic analysis on infinite symmetric groups
²¬ÅÄÁï°ì Application of minor summation formula to rectangular shaped representations of classical groups
¿ùëůÌé Quantum analogue of hypergeometric system associated with Grassmannian Ek,n
G.Olshanski Representations of infinite dimensional classical groups and the infinite symmetric group
Àî±Û Fusion algebras and knots in solid torus
1995(Ê¿À®7)
Âè5²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1995 jAN.8-10
²Ïź ·ò Wavelet ÊÑ´¹¤Èɽ¸½ÏÀ
¾®ÎÓ½Ó¹Ô Î¥»¶·²¤ÎÅù¼Á¶õ´Ö¤Ø¤ÎºîÍѤ¬¸ÇÍÉÔϢ³¤Ë¤Ê¤ë¤¿¤á¤ÎȽÄê¾ò·ï
¼¨Ìî¿®°ì Boundary value problems for the Shilov boundary of a bounded symmetric doman of yube type
Ìî¼δ¾¼ Bochner-Hecke Åù¼°¤Î¼þÊÕ
¶¶ÄÞÆ»É§ On generalized association schemes
¾¾ÌÚÉÒɧ Âå¿ô·²¤ÎÆó¤Ä¤Î involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²ò
»³º¬¹¨Ç· A1(1) ·¿Î̻ҷ²¤Î¤¢¤ë¼ï¤Î¥«¥·¥ß¡¼¥ë¸µ¤Ë¤Ä¤¤¤Æ
µÆÃÓ¹îɧ ²Ä²ò¥ê¡¼·²¾å¤Î K µåÈ¡¿ô¤È´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î¹ÔÎóÀ®Ê¬
·§¸¶·¼ºî ¤Ù¤Îí¥ê¡¼·²¤ÎÈó¥æ¥Ë¥¿¥êͶƳɽ¸½¤Ë¤Ä¤¤¤Æ
¶¶ËÜδ»Ê Virasoro ºîÍÑÁǤÎÀ¸À®¤¹¤ë one-parameter ·²
ß·¹¾Î´°ì On p-adic analysis
»°Ä»Àî¼÷°ì ¹ÔÎó´Ä¤Î Dirichret µé¿ô¤Ë¤Ä¤¤¤Æ
ÀÐÀî²íͺ Pfaffian ¤È»ØÉ¸¸ø¼°
²¬ÅÄæâ°ì Minor summation formula ¤Î±þÍÑ
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖSp(2,R) ¤È SU(2,2) ¾å¤ÎÊÝ·¿·Á¼°¡×(1995 Jan 9-13) ¿¥Åŧ¹¬Âåɽ
À¾»³ µý Ⱦñ½ã Lie ·²¤Î standard ɽ¸½ÆþÌ硽Sp(2,R) ¤È SU(2,2) ¤òÃæ¿´¤Ë¡½
»°¾å½Ó²ð »ØÉ¸¤ÈÉÔÊѸÇÍĶ´Ø¿ô
¿¥Åŧ¹¬ Toward wave models of representations of real semisimple Lie groups
ÁáÅŧÇî Differential equations for principal series Whittaker functions
µÜºêÂöÌé Sp(2,R) ¤ÎµöÍÆÉ½¸½¤ËÂФ¹¤ë generalized Bessel function ¤Ë¤Ä¤¤¤Æ
ÈÓÅÄÀµ½Ó Matrix coefficients of the principal series representations of Sp(2,R) as hypergeometric functions of C2-type
¿¥Åŧ¹¬ Matrix coefficients of the large discrete series representations of Sp(2,R) as hypergeometric series of two variables
ë¸ý·òÆó Discrete series Whittaker functions of SU(N,1)
ÅÔÃÛÀµÃË SU(2,1) ¾å¤Î¼Â¿·Ã«´Ø¿ô
Ê¿²ì °ê SU(2,2) ¤ÎÎ¥»¶·ÏÎóɽ¸½¤Î multiplicity ¤Ë¤Ä¤¤¤Æ
º£ÌîÂóÌé U(2,2) ¤Îα¿ô¥¹¥Ú¥¯¥È¥ë
¸Å´Ø½Õδ ÊÝ·¿ L ´Ø¿ô¤È Whittaker ´Ø¿ô(Sp(4) ¤Î¾ì¹ç)
¼À¥ ÆÆ¡¦¿ûÌî¹§»Ë Spherical functions and Rankin-Selberg convolution I Local theory
¼À¥ ÆÆ¡¦¿ûÌî¹§»Ë Spherical functions and Rankin-Selberg convolution II Global theory
ÅÏÊÕδÉ× ¥æ¥Ë¥¿¥ê·²¤ÎÊÝ·¿ L ´Ø¿ô¤È¥Æ¡¼¥¿µé¿ô¥ê¥Õ¥È
¹âÌî·¼»ù Standard L-functions for Un,n
¿¥Åŧ¹¬¡¦ÉÍȪ˧µª ¼«ÌÀ¤Êɸ½à°ø»Ò¤ò»ý¤ÄÂå¿ô¶ÊÌ̤Υ⥸¥å¥é¥¤¤ÎͱÛŪ¤ÊÍýÏÀ¤ÎÉü½¬
µÈÅÄÀµ¾Ï ÇÛÃÖ¶õ´Ö¤Î°ì°Õ²½ ¡½Ä¶´ö²¿ÀÑʬ
¾¾ËÜ·½»Ê SU(2,2) ¾å¤Î theta ´Ø¿ô
°Ë¿á»³ÃεÁ IV·¿ÂоÎÎΰè¾å¤ÎÀµÂ§ÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°
ÂçÅçÍøÍº Ⱦñ½ã Lie ·²¤Î´ûÌóɽ¸½¤Î¼ç·ÏÎóɽ¸½¤Ø¤ÎËä¤á¹þ¤ß ¡½SU(2,2) Åù¤òÎã¤Ë
¾®ÎÓ½Ó¹Ô ¶É½êÂоζõ´Ö¤Î¥³¥Û¥â¥í¥¸¡¼¤È Vogan-Zuckerman ƳÍèÈ¡¼ê²Ã·²ÆþÌç
ÆüËÜ¿ô³Ø²ñǯ²ñ1995.MarchΩ̿´ÛÂç³Ø
ÆÃÊֱ̹é
ÏÆËÜ ¼Â ¥¹¡¼¥Ñ¡¼Âå¿ô¤Îɽ¸½¤È¤½¤ì¤Ë´ØÏ¢¤¹¤ëÏÃÂê
Âè34²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1995.July 18-20)¡îR·Á»ÔÍ·³Ø´Û¥Û¡¼¥ë (¾¶)
¼¨Ìî¿®°ì Poisson ÀÑʬ¤È Hua ÊýÄø¼°
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½ÏÀ¤ÈÅù¼Á¶õ´Ö¾å¤Î²òÀϳء×(1995 July 31-Aug 3) ºØÆ£ ËÓÂåɽ
ÂÀÅÄÂöÌé ¼ÂÂå¿ô·²¤Îɸ½àɽ¸½¤Î associated variety ¤È¶ÒÎíµ°Æ»¤ÎͶƳ
¼¼ À¯Ï ÂоιÔÎó¤Î¶õ´Ö¾å¤ÎÉÔÊÑĶ´Ø¿ô¤Î·×»»
º´Ìî ÌÐ ¥Õ¡¼¥ê¥¨²òÀϤÎÈó²Ä´¹²½¤Ø¤ÎºÇ¶á95ǯ´Ö¤ÎÊâ¤ß
¸ÞÌÀ ÃÒ E8 ·¿Ã±Ï¢·ë¥³¥ó¥Ñ¥¯¥È¥ê¡¼·²¤Î³¬¿ô8¤Î¶ËÂçÉôʬ·²¤Ë¤Ä¤¤¤Æ
´Ø¸ý±Ñ»Ò U(n,n) ¤Î¤¢¤ë´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î´ö²¿³ØÅª¼Â¸½¤È¥Ú¥ó¥í¡¼¥ºÊÑ´¹
ÀÐÀî ů ¼ÂÁжʶõ´Ö¾å¤ÎÁ´Â¬ÃÏŪ¥é¥É¥óÊÑ´¹¤ÎÁü¤ÎÆÃħÉÕ¤±¤Ë¤Ä¤¤¤Æ
¹õÌÚ ¸¼ ¶¦·Á¾ìÍýÏÀ¤Ë¸½¤ì¤ëÀþ·ÁÈùʬÊýÄø¼°¤Ë¤Ä¤¤¤Æ
ëºê½ÓÇ· ¥¨¥ë¥ß¡¼¥ÈÂоζõ´Ö¾å¤Î Gelfand ·¿Ä¶´ö²¿ÊýÄø¼°
ÃæÃ«¼Â¿ Ek,n ¤Î q-analogue ¤Ë¤Ä¤¤¤Æ
ĹëÀî¹À»Ê Ruijsenaars ¤Î²Ä´¹º¹Ê¬ºîÍÑÁÇ¤È Yang-Baxter ÊýÄø¼°
ÍÌÚ ¿Ê¡¦ÃæÅçãÍΡ¦»³ÅÄ͵»Ë A1(1) ¤Î´ðËÜɽ¸½¤È Littlewood-Richardson ·¸¿ô
ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é ÅìËÌÂç³Ø
¿ÀÊÝÆ»É× ³Ê»ÒÌÏ·¿¤Î¸½ºß (̵¸Â²ÄÀÑʬ·Ï)
ÅÚ²°¾¼Çî ɽ¸½ÏÀ¤È¾ì¤ÎÎÌ»ÒÏÀ¤È¤½¤·¤Æ¥È¥Ý¥í¥¸¡¼(̵¸Â²ÄÀÑʬ·Ï)
¿¥Åŧ¹¬ °ìÍøÍѼԤ«¤é¸«¤¿¼Â´ÊÌóÂå¿ô·²¤Îɽ¸½ÏÀ
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1995.Dec.12-15 ) ²Æì¸üÀ¸Ç¯¶âµÙ²Ë¥»¥ó¥¿¡¼ À¤ÏÃ¿Í ¿û½¤°ì
ÂçÅçÍøÍº Capelli identities, degenerate series and hypergeometric functions
µÈ±ÊŰÈþ The embeddings of discrete series into some induced representations for an exceptional real semisimple Lie group of type G2
ÈÓÅÄÀµÉÒ Spherical functions of the principal series representations of SL(2,R)
¼¨Ìî¿®°ì Boudary value problems on Hermitian symmetric spaces
J.F.van Diejen Algebras of commuting difference operators with applications to orthogonal polynomials in several variables
»³ËÜÆØ»Ò Orbits on the flag variety and images of the moment map ¡½¡½For U(p,q) and Sp(p,q)¡½¡½
À¾»³ µý¡¦²¦ ³¤Àô About commutant algebra of Cartan-type Lie superalgebra W(n)
Íî¹ç·¼Ç· ¤¢¤ë³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÉÔÊѼ°ÏÀ
»³¸ý ³Ø Ê£ÁǶÀ±Ç·²Gm,p,n¤ÎLittlewood-Richardson ring¤Ë¤Ä¤¤¤Æ
¹ñ¾ìÆØÉ× Quantum Jacobi-Trudi formula for Uq(Br(1)) from analytic Bethe ansatz
»°Ä»Àî¼÷°ì On Dirichlet series and regular conjugacy classes in GL(N,Z)
´¢»³ÏÂ½Ó Very cuspidal representations of p-adic symplectic groups
1996(Ê¿À®8)
Âè5²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥×
ÆüËÜ¿ô³Ø²ñ 1996 April ¿·³ãÂç³Ø
ÆÃÊֱ̹é
»°Ä®¾¡µ× A solution to quanrum Knizhnik-Zamolodchikov equations and its application to eigenvalue problems of Macdonald type(È¡¿ô²òÀϳØ)
ÌÀµ½Ó Î̻ҷ²¤È q ²òÀÏ(̵¸Â²ÄÀÑʬ·Ï)
Âè35²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1996.July 22-24) ÆàÎɽ÷»ÒÂç³Ø (¾¶)
Ìî¼δ¾¼ Berezin ÊÑ´¹¤È Lie ·²¤Îɽ¸½
¾¾Ëܵ׵Á Unitary degenerate series of rel reductive groups
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤ÈÅù¼Á¶õ´Ö¤Îɽ¸½ÏÀ¡×1996.July29-Aug.15(Íî¹ç·¼Ç·Âåɽ)
¹Ô¼ÔÌÀɧ¡¦»³²¼ Çî Associated variety, Kostant-Sekiguchi correspondence, and locally free U(n) action on Harish-Chandra modules
»ûÅÄ »ê¡¦È¬É´¹¬Âç Sp(2n,R) ¤ÎÎ¥»¶·ÏÎóɽ¸½¤ÎÁȹ礻ÏÀ
ã·Æ£µÁµ× crystal base ¤Î´ö²¿³ØÅª¼Â¸½¤Ë¤Ä¤¤¤Æ
ÃæÅç ·¼ Âå¿ô¶ÊÌ̤Υҥë¥Ù¥ë¥È³µ·¿,¥Ï¥¤¥¼¥ó¥Ù¥ë¥°Âå¿ô¤ÈĺÅÀÂå¿ô
»³¸ý Çî ¤¢¤ë¼ï¤Î(Èó²Ä´¹)¥³¥ó¥Ñ¥¯¥È·²¾å¤Î F.-M.RieszÄêÍý¤Ë¤Ä¤¤¤Æ
ë¸ý·òÆó Weyl ·²ÉÔÊѤÊÈùʬºîÍÑÁǴĤΰì°ÕÀ¤Ë¤Ä¤¤¤Æ
±§Âô ã
¾¾ÌÚÉÒɧ ¥ê¡¼·²¤Î2¤Ä¤Î involution ¤ÎʬÎà¤È¥ë¡¼¥È·Ï
ÌÀµ½Ó¡¦»°Ä®¾¡µ× Hecke ´Ä¤Îɽ¸½¤È Selberg ·¿ q ÀÑʬ
ºØÆ£¶³»Ê Generalized root systems of Witt index less or equal 2
¤Þ¤¿¤Ï
Product of eta-functions for regular systems of weights
ºØÆ£¶³»Ê Elliptic Weyl ·²¤Î Coxeter-like ɽ¼¨
º£ÌîÏÂ»Ò Super Lie algebra sl(m|l) ¤ÎÉÔÊÑ¿¹à¼°¤Ë¤Ä¤¤ ¡½Chevalley ·¿¤ÎÄêÍý
ÅÚ²°¾¼Çî ¶¦·Á¾ì, Degenerate Dorulele Affine Hecke Algebra Haldame-Shastly ·Ï
ÆüËÜ¿ô³Ø²ñ 1996 Sept ÅìµþÅÔΩÂç
Áí¹ç¹Ö±é
ÀÄËÜÏÂɧ(ÆüËÜ¿ô³Ø²ñ½©´ü¾Þ)
ÆÃÊֱ̹é
¿¥Åŧ¹¬ ÊÝ·¿¤Î¿ôÏÀ¤Î¤¿¤á¤Î¼ÂĴϲòÀÏ(50¼þǯµÇ°)
»³ÅÄ͵»Ë Affine Lie algebras and reduced Schur functions(Âå¿ô³Ø)
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¸Åŵ·²¡¦Î̻ҷ²¤Îɽ¸½ÏÀ¤ÈÁȹ礻ÏÀ¡×1996 Oct 28-Nov 1 ÀÐÀî²íͺÂåɽ
¿¹ÅÄ±Ñ¾Ï CL-shellability of ordered structure of reflection systems
¹ñ¾ìÆØÉ× Spectral decomposition of the corner transfer matrices by skew Young diagrams
ÍÌÚ ¿Ê TBA
¾®¿ÜÅÄ²í ¥Ø¥Ã¥±¥«¥Æ¥´¥ê¡¼¤Î´ûÌóɽ¸½
ÀÖºäΩÌé Finite-dimensional representations of quantized affine algebras
»³º¬¹¨Ç· Ram¤ÎÏÀʸ¤Î¾Ò²ð;BMW-algebra¤Î»ØÉ¸¤È ¦Ë ring notation
ÅÄÀî͵Ƿ A combinatorial formula for Kazhdan-Lusztig polynomials of parabolic type
À¾»³ µý GLn¤Îɽ¸½¤ò n ¼¡Âо粤ËÀ©¸Â¤·¤¿¤È¤¤Îʬ²òˡ§
¹â¶¶ÂçÊå º¹Ê¬ÊýÄø¼°¤«¤é¥»¥ë¥ª¡¼¥È¥Þ¥È¥ó¤òÆÀ¤ë¤Ë¤Ï?ĶΥ»¶²½¤Î´ðÁäȱþÍÑ
Ä»µï ¿¿ ¸ÍÅijʻҤȺÇŬ²½ÌäÂê
¡Öɽ¸½ÏÀ¤È¤½¤Î¼þÊÕ¡×(1996 Nov.5-8)ÁÒÉß»Ô ¹ñºÝ³Ø½Ñ¸òή¥»¥ó¥¿¡¼ À¤ÏÃ¿Í ¿ÜÆ£À¶°ì,¼¨Ìî¿®°ì
»³ÅĽ¤»Ê ·ë¤ÓÌܤÎÏÃ(»Ò¤Ïï±)
ÅÄÀî͵Ƿ Áȹ礻ÏÀŪ»ëÅÀ¤«¤é¤ß¤¿ parabolic type ¤Î Kazhdan-Lusztig polynomial
Íî¹ç͵Ƿ Harish-Chandra homomorphism of U(gln)
ƶ ¾´¿Í µðÂç¤ÊĺÅÀ¿ô¤Î¥°¥é¥Õ¤Î¾å¤Î¥é¥ó¥À¥à¥¦¥ª¡¼¥¯¤Ë¤ª¤±¤ëÂоÎÀ¤ÈÎ׳¦¸½¾Ý
»°Ä®¾¡µ× Macdonald ¤Î¸ÇÍÃÍÌäÂê¤Ë¤ª¤±¤ëÍÍýÈ¡¿ô²ò
¾®ÎÓ½Ó¹Ô Vanishing theorem of modular symbols on locally symmetric spaces
¼ã»³Àµ¿Í Chebotarev equidistribution theorm for holonomies
¿¥Åŧ¹¬ Âè2¼ï¤Îµå´Ø¿ô¤È¥â¥¸¥å¥é¡¼Â¿ÍÍÂΤΥ⥸¥å¥é¡¼Åª°ø»Ò¤Î¥°¥ê¡¼¥ó´Ø¿ô
¾¾ÌÚÉÒɧ Double coset decompositions of Lie groups arising from two involutions
Gary Seitz Double cosets in albebraic groups
H.Rubenthaler Zeta functions associated to certain families of real symmetric spaces
µÜËܲíɧ Vertex operator algebra constructed from Code and its representations
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1996.Nov.19-22 ) °¦Ãθ©³ÛÅÄ·´»°²Ï¥Ï¥¤¥Ä À¤ÏÃ¿Í ²¬ÅÄÁï°ì¡¦ÎÓ ¹§¹¨
À¾»³ µý On Weyl-Schur's duality for Cartan-type Lie (super) algebras
Íî¹ç·¼Ç· ÆóÌÌÂ粤ËÉտ路¤¿²ÄÀÑʬ·Ï
°ÀÅıѻñ¡¦¾®ÃÝ ¸ç¡¦µ×ÊÝÀ²¿®¡¦ÇòÀÐ ½á°ì Virasoro ·¿Âå¿ô¤È²Ä²òÌÏ·¿
²ÃÆ£¿®°ì Whittaker - ¿·Ã«´Ø¿ô
¾®ÎÓ½Ó¹Ô ¥æ¥Ë¥¿¥êɽ¸½¤ÎÀ©¸Â¤È¤½¤Î±þÍѤˤĤ¤¤Æ
Zhu Chengbo On certain small unitary representations of indefinite orthogonal groups
Mathijs S. Dijkhuizen Quantization of Poisson structures on complex Grassmannians and some multidimensional q-Selberg integrals
ÍÌÚ ¿Ê Ê£ÁǶÀ±Ç·²¤Î¥Ø¥Ã¥±´Ä¤Îɽ¸½ÏÀ¤Ë¤Ä¤¤¤Æ
¹ÓÀîÃι¬¡¦ÎëÌÚÉð»Ë Double degenerate affine Hecke algebra and K-Z equation
µÆÃϹîɧ Jordan 3 ½Å·Ï¤È Heisenberg ·²¾å¤Î K µåÈ¡
¾®Àô ¿¡¦¹¾¸ýÀµ¹¸ SU(n,1) ¤Î Harish-Chandra c-function ¤Ë¤Ä¤¤¤Æ
°æ¾å ½ç»Ò ²Ä²ò Lie ·²¤Î holomorphically induced representation
¡ÖĶ´ö²¿·Ï¥ï¡¼¥¯¥·¥ç¥Ã¥× in ¿À¸Í¡×1996 Dec 2-5 ¿À¸ÍÂç³Ø
µÈÅÄÀµ¾Ï ¹¬±¿¤Ë¤â¸«¤Ä¤«¤Ã¤¿°¦¤¹¤Ù¤Èþ¤·¤¤È¡¿ô¤Î¤³¤È
Çß¼ ¹À Painleve ÊýÄø¼°¤ËÉտ魯¤ëÆÃ¼ì¿¹à¼°
»³ÅÄÂÙɧ ¶¦·Á¾ìÍýÏÀ¤ÈĶ´ö²¿È¡¿ô
¾®ÅçÉðÉ× ¥Ü¡¼¥º¥¬¥¹¤ÎÁê´ØÈ¡¿ô¤È Painleve ÊýÄø¼°
´Ø¸ý¼¡Ïº ÇÛÃÖ¶õ´Ö¤ÈADE¿ô³Ø
¶â»Ò¾»¿® Ķ´ö²¿¤ÈĶÆÃ°ÛÂʱ߶ÊÀþ
»Ö²ì¹°Åµ¡¦À®µÜÆÁɧ¡¦ÂçÄÍ ¿¿¡¦¾®ÃÓ·òÆó Report from our down-to-earth working on mirror symmetry of K3 surfaces
ÌÀµ½Ó Î̻ҲÄÀÑʬ·Ï¤È affine Hecke ´Ä
°ËÆ£²íɧ ¥ë¡¼¥È·Ï¤ËÉտ魯¤ë¥¸¥ã¥¯¥½¥óÀÑʬ¤È¥Ý¥¢¥ó¥«¥ìµé¿ô
¼¨Ìî¿®°ì µåÈ¡¿ô¤ÈĶ´ö²¿È¡¿ô
ëºê½ÓÇ· Ķ´ö²¿ÊýÄø¼°¤Î·²ÏÀŪ¹Í»¡
¿¿Å罨¹Ô ÈóÀƼ¡¹çή·¿Ä¶´ö²¿ÈùʬÊýÄø¼°¤Îȯ»¶²ò¤Î¹½Â¤
¹â»³¿®µ£ À°¿ô·×²èË¡¤ÈĶ´ö²¿Â¿¹à¼°
Âç°¤µ×½Ó§ D²Ã·²¤Îb´Ø¿ô¤ÈÀ©¸Â¤Î·×»»¤Î¥¢¥ë¥´¥ê¥º¥à
¾¾ËÜ·½»Ê ¹çή·¿Ä¶´ö²¿´Ø¿ô¤Ë´Ø¤¹¤ë¸òÅÀÍýÏÀ¤Î´°À®¤Ë¸þ¤±¤Æ
»°Ä®¾¡µ× α¿ô²òÀϤˤè¤ë¥Þ¥¯¥É¥Ê¥ë¥ÉÆâÀÑÃÍͽÁۤξÚÌÀ
1997(Ê¿À®9)
Ä»¼èɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à1997(Âè6²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥×)Jan.5 Ä»¼èÂç³Ø
ÂçÅçÍøÍº Bruhatʬ²ò¤ÈHarish-Chandra homomorphisms
»³²¼ Çî ¥ê-¥Þ¥óÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤÈHarish-Chandra²Ã·²¤ÎÌÏ·¿
Çð¸¶Àµ¼ù Representation theory and Geometry
ëºê½ÓÇ· Ķ´ö²¿ÊýÄø¼°¤Î·²ÏÀŪ¹Í»¡
Íî¹ç·¼Ç· ¼Â5¼¡¸µÁжʶõ´Ö¾å¤Î¤¢¤ëÆÃ¼ì´Ø¿ô
¾®ÎÓ½Ó¹Ô O(p,q) ¤Î minimal ɽ¸½¤Ë¤ª¤±¤ë dual pair
¼ã»³Àµ¿Í À׸ø¼°¤Î»ÈÍÑË¡
Ìî¼δ¾¼ Multiplicity-free action ¤È Berezin ÊÑ´¹
µÆÃÓ¹îɧ Heisenberg·²¾å¤ÎO(n)-µåÈ¡¿ô
°æ¾å½ç»Ò ¶ÒÎí¤ª¤è¤Ó²Ä²ò Lie ·²¤Î holomorphically induced representation
À¾»³ µý Sp(2n,R) ¤Î¥æ¥Ë¥¿¥êºÇ¹â¥¦¥§¥¤¥Èɽ¸½¤Î Bernstein ¼¡¿ô¤Ë¤Ä¤¤¤Æ
ë¸ý·òÆó r-2 ·¿¥Ý¥Æ¥ó¥·¥ã¥ë¤ò»ý¤Ä¥Ï¥ß¥ë¥È¥Ë¥¢¥ó¤È²Ä´¹¤ÊÈùʬºîÍÑÁǤˤĤ¤¤Æ
Poguntke¶µ¼ø¤ò°Ï¤à¸¦µæ½¸²ñ 1997.3.6-7Æü µþÅÔÂç³ØÍý À¤ÏÃ¿Í Ìî¼δ¾¼
µÆÃϹîɧ On Gelfand pairs associated to non type I solvable Lie groups
·§¸¶·¼ºî Non-unitary representations and orbits for some nilpotent Lie groups
Detlev POGUNTKE A short proof of the injectivity of the Harish-Chandra transform
¿ÜƣδÍÎ Dimension theory of group C*-algebras of type I
²Ïź ·ò Atomic Hardy spaces and maximal operators on semisimple Lie groups
¿·²° ¶Ñ Banach representability for a kind of semi-direct groups
°æ¾å½ç»Ò Holomorphically induced representations of some solvable Lie groups
¥·¥ó¥Ý¥¸¥¦¥à¤ÎÎò»Ë¤Î¥Ú¡¼¥¸¤ËÌá¤ë
½¸²ñ¡¦¥»¥ß¥Ê¡¼¤Î¥Ú¡¼¥¸¤ËÌá¤ë
ÆüËܸì¥Û¡¼¥à¥Ú¡¼¥¸¤ËÌá¤ë
Last Update :