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Abstract

The Warsaw circle is obtained by joining the boundary of the clo-
sure of the graph of sinl/z (—1/7 < z < 1/m). It is well-known
as an example of a connected but not path-connected compact set.
Inserting such components almost everywhere along the circle, we ob-
tain the Warsaw circle with infinitely many singular arcs, denoted by
X. In 1955, Gottschalk and Hedlund introduced in their book that
Jones constructed a minimal homeomorphism on this set. However
this homeomorphism is defined only on this set. In 1991, Walker first
constructed a homeomorphism of S' x R whose minimal set is home-
omorphic to X. However, his homeomorphism cannot be a diffeomor-
phism by Theorem 1. In this paper, we will construct a C'*° diffeomor-
phism of S' x R with a compact connected but not path-connected
minimal set containing arcs (Theorem 2). In order to construct a C'*°
diffeomorphism, we use the approximation by conjugation method.
The key point of the construction is the fact that the Warsaw circle
is an inverse limit of circles.

1 Introduction

In order to examine the dynamical properties of homeomorphisms, compact
invariant sets are keys to consider the asymptotic behavior of orbits. A
minimal set is a compact invariant set which is minimal with respect to
the inclusion. The minimal sets play important roles as cores of compact
invariant sets.
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In low dimensional dynamical systems, only few topological types of min-
imal sets have been found (Problem 1.6 in [3]). In this paper, we consider
whether the Warsaw circle with infinitely many singular arcs (Figure 1) can
be a minimal set of a surface diffeomorphism.

Figure 1: The Warsaw circle with infinitely many singular arcs
The Warsaw circle is the set obtained from the closure of the graph of
1
y=sin— (=1/m<zx<1/ma#0)
x

by identifying the ends. We call {(0,y); |y| < 1} a singular arc. The Warsaw
circle is famous as an example of a connected but not path-connected set.
A Warsaw circle with infinity many singular arcs is obtained by inserting
infinity many such singular arcs along the circle, denoted by X (the precise
definition will be given in §2).

In 1955, Gottschalk and Hedlund introduced in their book ([5]) that Jones
constructed a minimal homeomorphism of X (that is, the whole set X is a
minimal set). Although this set X was embedded in S' x R, the homeo-
morphism is defined only on the set X. In 1991, Walker ([9]) constructed
a homeomorphism of S! x R whose minimal set is homeomorphic to X.
However, his homeomorphism cannot be differentiable because the singular
arcs keep the vertical directions invariant and the minimality destroys the
differential structure (Theorem 1).

In this paper, we will construct a C°° diffeomorphism of S! x R with
a compact connected but not path-connected minimal set containing arcs



(Theorem 2). In order to prove Theorem 2, we use the approximation by
conjugation method (see [2] and [4]). The key point of our construction is
the fact that the Warsaw circle with infinitely many singular arcs is an inverse
limit of circles as the Warsaw circle is (see §4). Thus we can construct such a
diffeomorphism in the same manner as Handel constructed a diffeomorphism
of a surface whose minimal set is a pseudo-circle ([6]).

The author would like to thank Shigenori Matsumoto for his helpful com-
ments on the first manuscript.

2 Statement of results

First recall the homeomorphism of Gottschalk and Hedlund, which was in-
troduced in §14 of [5] as an example communicated by Jones.

We parametrize the circle by S = R/Z. Let xo : S — {0} — R denote
the function defined by

{ Xo() = sin £ if —
Xo(x) =0 if

%:B#O,

l\')l»—\l/\

<z
<

|/\:]|>—l

L<la
Then the closure of the graph of xg is called the Warsaw circle, denoted by
Xo.

Let w be an irrational number. Let A = {nw mod Z;n € Z}. We choose
a sequence {cy }nez of positive numbers satisfying >, ¢, < oco. We define
a function y, : S' — A — R by

Xw(T) = Z CnXo(T — nw).

nez

For m € Z, the arc

{(mw,y) €eS'xR; —c,, <y-— Z Cnxo(r —nw) < cm}

neZ,n#m

is called a singular arc for m € Z, and the closure of the graph of y, is
called the Warsaw circle with infinitely many singular arcs, denoted by X.
For o € A, x. is continuous at z ([5]). Thus X is the union of the graph of
Xw and singular arcs S, (m € Z).

The rotation by w on S! induces a homeomorphism on graphy,. By
[5], this homeomorphism is uniformly continuous on graph x,, and thus it
can be extended on the closure of the graph of x,. This is the minimal
homeomorphism of X introduced in [5].



On the other hand, we assume that f is a homeomorphism of S* x R such
that X is a minimal set of f. Then f maps each singular arc onto a singular
arc. Let p; (i = 1,2) denote the projection to the i-th factor of S x R. Then
we can define an induced homeomorphism p; : S — S by ps(z) = p1f(z,y)
for any (z,y) € X.

Theorem 1. Let w be an irrational number. Let {c,}nez be a sequence of
positive numbers satisfying Y ., ¢, < 0o. Let X denote the closure of the
graph of x.. If ¢, satisfies that limsup,,_, CZ—II <1 andlimsup,,_,_ cjil <

1, then there is no Ct-diffeomorphism f of S* x R such that the induced
homeomorphism py of S* is a rotation and X is a minimal set of f.

For the homeomorphism f constructed by Walker, ps is a rotation and

Cn = ﬁ Thus this cannot be of class C* by Theorem 1.

Theorem 2. There is a C* diffeomorphism f of S x R with a compact
connected but not path-connected minimal set containing arcs.

3 Necessary conditions

In this section, we will prove Theorem 1. We assume that there is a C*
diffeomorphism f of S' x R such that the induced homeomorphism p; of S*
is a rotation and X = graph x,, is a minimal set for an irrational number w.
In the following, we will deduce the contradiction.

Let Q. = {(z,y); y > yo for any (z,y9) € X}. Since S* x R— X consists
of two connected open sets, €, is invariant under f or f2.

Proposition 1. X is a minimal set of f2.

Proof. Suppose that there is a compact subset C' of X invariant under f2.
Then C'U f(C) is invariant under f, and thus C'U f(C') = X. Since C'N f(C)
is also invariant under f, either X = C or C' N f(C) = ) holds. Now X is
connected. Thus C'N f(C) is not empty, and thus X = C. Therefore X is a
minimal set of f2. |

Thus we have only to prove Theorem 1 when f(,) =Q,.

Proof of Theorem 1. Let S, = p;*(nw) N X. Since f(Sy) is a singular arc,
there is ng € Z such that f(Sy) = Sp,. Thus ps(0) = now. We choose a
universal covering py of ps so that p;(0) = now. Then ps(z) = x + now for
any x € R because p; is a rotation. As a consequence, f(S;) = Siyn, for any
1€ 7.



We assume that ng > 0. We can prove the other case similarly.

Let (z,y) be a point of X such that p;*(z) N X consists of one point,
i,e. z € A. We take an arbitrary € > 0 and an arbitrary neighborhood
W of (z,y) in S* x R. Since p;'(x) N X consists of one point, there is a
neighborhood U of x in S* such that p;*(U) N X is contained in W. Since
limsup,, ., “* < 1, there is I > 0 such that “ < "Y1+ ¢ for any i > I.
We choose annlnteger 1o greater than or equal to I such that ¢ow € U. Then
S;, 1s contained in W. By the mean value theorem, there is z;, of S5;, such
that 8%%”[(21'0) = c”;% Now

Ciotno _ Ciot1 Ciot2  Ciotno  _y . o
Ci

0 Ciy  Cig+1 Cig+no—1

Thus we conclude that, for any e and neighborhood W of (z,y), there is a
point in W such that a%—Qyof < 1+ ¢€. Since € and W can be chosen so small,

3p20f (.Z' y) 1.
The set {(x,y) : py () N X consists of one point} is dense in X. Thus

we obtain

8%—2;]0 is less than or equal to 1 on the whole X. Now f(S;) = Sjin, for
any ¢+ € Z. Thus we obtain -+ > c_9,, > Cc_, > ¢o > ---. However this
contradicts the assumption ) _, ¢, < oco. |

4 (C™ construction

4.1 The Warsaw circle is an inverse limit of circles.

We start from showing that the Warsaw circle is an inverse limit of circles:
Let a,, = GTr forn =1,2,---. Then sin ai = —1. We define a function

)
gn:[_%aé] R(TL:LZ,)by

sin —L if0<zx<i—uq,
T+an ™
gn(z) = ¢ —sin —;c-lmn ifa, — =<z <0
0 1f——an§\x|§%or3@:0

(see Figure 2). Let Y, denote the set obtained by first identifying the end
points (—%,O) and (%,0) of the graph of g, and then adding the interval
{0} x [=1,1]. Then Y,, is homeomorphic to the circle. We define a projection



Figure 2: The Warsaw circle is a circle inverse limit

Tpt Ypi1 — Y, by

( 1/2—1/m+an 1 - "
<1/2 1/7l'+an+1( _§)+270 lf;_an—&—lgxgi

(T + apt1 — an,Y) if a,, — <z< s
m(z,y) =< (0,y) if gy —a, <v<a,—
(.CL’ +an — An41, y)

\ <1}£1}7/:;:L (z + %) - %7(]) if — % << _% + an1

: 1
if —;+an+1§l’§an+1—

That is, the map 7, collapses the subset {(z,vy); ani1—an <z < ap —ani1}

into the y-axis horizontally.
For the Warsaw circle X, we define h,, : Xg — Y,, by

[ (Ml -D+y) fl<a<)
(x_anay) 1fan§g;§%
(x+an,y) if —}FSxS

1/mtan+1/2 N T
_/1/7r—+1/2($+5)—§,y) if —5<a<

Q

3 |=



Then 7, o hyy1 = hy,. The maps {h,} induce a homeomorphism from the
Warsaw circle to the inverse limit (Y,,,,).

4.2 Inverse limit of circles for the construction.

Inverse limits of circles are adequate to make minimal dynamical systems.
However the above structure is not convenient for our purpose by Theorem 1.
Thus we introduce an inverse limit of circles whose singular arcs are not
vertical for the Warsaw circle with infinitely many singular arcs in order to
prove Theorem 2.

Let ¢; = 2. We choose large positive integers ¢, (n = 1,2, - - - ) inductively.
Let L, denote the positive numbers defined by L; = 3 and

I — ( 2 1)
" (n LiLy--- Ly Qn

for n > 1. Although we need several conditions on ¢, for our construction,
we only assume here that ¢, = k,q,_1L1Ls--- L, 1 for some k, € Z,. In
particular, ¢, is a multiple of ¢, _; and L,, is an integer. Let X,, = {(x,y); = €
R/Z,|y| < 1} and let p; denote the i-th projection of X,, (i = 1,2). Let Ry
denote the f-rotation Ry(z,y) = (v + 6,y) in X,,. We define a simple closed
curve C,, : R/L,Z — X,, by

Cn(t) -

(t,Ly-++ Lypqt — 1) if0<t<——
2 Lyi-Lp_1qn Ly 1 : 1 Ln
<_t + LyLp_1’ Q:L—Lr“an (t o q_n) o 5) if Ly-Lp_1 sts an

and C), (t + S—n> = R.1 C,(t) (see Figure 3).

Then Cu(0) = (0.~3), Culgr ) = (g o) Gul) = (G2
and C’ connects these points by line segments. Let £, = {C,(t); 0 < t <
LI—LQ In 1} The slope of ¢,, is Ly --- L,_1, which tends to oo very fast as

n — 00. Furthermore, the curve C), is invariant under R 1 and is contained

in R/Z x [—1/2,1/2]. If we further assume that ¢, < LTLLQ -+ Ly, then we

obtain
1 1 1

1 2
I« —mm<—"<— 4+ —< — < - < 1.
Li-“Ly qu Li-L, g  qn
Let ¥, : Xpy1 — X, denote the map defined by ¥, (z,y) = Cp(L,x).

Notice that ¢, (¢,4+1) = £, and v, commutes with R1 . The latter implies

an
that v, commutes with Ry, since 6, is a multiple of qi

We define a continuous map ¥, : S — S by U, (t) = p1Ci1(Lpiit).
Then 1, (Cri1(Lpiat)) = Co(L,¥,(t)) because, for (x,y) = Cphi1(Lpsat),

7
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Figure 3: Circles C),

Un(x,y) = Cp(Lpx) = Cp(L, ¥, (t)). Thus the following diagram commutes.

gL Crrligd) Xnt1
v, | O L ¥n

gt 0y

We will use the inverse limit (S', ¥,,) as a core for the construction of a C>
diffeomorphism in Theorem 2 (see [1]).

4.3 Overview of the construction.

We give an angle 6,, € R/Z by 6, = Y7 L forn =1,2,---. We choose a

=1 g

C*> embedding ¢, : X,+1 — X, sufficiently near 1, satisfying

8



(a) Ren O Pn = Pn© R9n7
(b) en(lni1) = Ly,
(C) <pn(Xn+1) = {(x,y) € Xn; |y| < %}

Let &, = p10pg0---0¢p,. Then &1(Xy) D Po(X3) D ---. We will give a
diffeomorphism f, : X; — X; satisfying

(d) fni1 = fn outside ®,(X,,1) and

(€) fari(z,y) = ®uRy,,, 0, (z,y) if (z,y) € Pp(Xny1) and ;M (z,y) €
{(z,y); |y <3}

If we choose f,.1 sufficiently near f,, then we can show that f, converges
to a C'* diffeomorphism f of X; as n — oo. The proof is based on the
comparison of f, and f,.; in the middle part. Thanks to the condition
Ry, o v, = ¢, 0 Ry, , the equation f, | = q)n,len(I);il can be written as
®,, Ry, @, !, while f,, = ®,Ry,,,P,'. The crucial point is that we can choose
the number g, after the construction of ®,,. Letting |0,,.1—6,| small enough
compared with ®,,, we get the desired convergence.

In the following, we will give the precise construction of f and will show
that (), ®,,(X,41) is a connected but not path-connected minimal set of f
containing the arc /.

4.4 Precise construction.

Let X, = {(z,y); 2 € R/Z,|y| < 1} forn =1,2,---. Let d denote the metric

of X,, induced from the Euclidean metric, and let diam F' denote the diameter

of a set F. We define the rotation Ry : X,, — X,, by Ry(z,y) = (x + 0, y).
Let ¢; = 2 and 6, qil. We define f; : X7 — X; by fi(z,y) = Re, (z,y)

for x € R/Z and |y| < 1. Let L; = 3. We define a simple closed curve
Cl . R/L1Z - X1 by

t,t—1 ifo<t<1
(Jl(t):{ ( 2)

L 1 : L
@¢+2wfh<p_4>_§) ifl<t<l

q1

and Cy(t + %) = Ry, Ci(t) for any t € R/L1Z (see Figure 3). Then L,
is the length of p; o € and (' is invariant under R/, . Let ¢; denote the
segment {(t,t —3); 0 <t <1}

We define ¢, : Xo — Xi by ¢1(z,y) = Ci(Liz). Then ¢y o Ry, =
Rijq 041, Let ly = {(t, L1t — %)7 0<t< Lil} Then 1)1 maps {5 onto /5.
We choose a C'*° embedding ¢, : Xo — X; along the curve (] satisfying

9



(1) d(p1(z,y), Y1 (z,y)) < 1/16 for any (x,y) € Xs. In particular,

. 1
diam{(z,y); ¢1(z,y); [yl <1} < ¢
because {1 (x,y); |y| < 1} consists of one points.

(2) 10 Rijg = Rijg 001 (i-e. w10 Ry, = Ry, 0 1).

(3) p1]la = Y1|ly. In particular, p;(ly) = /¢4, %(0,_%) _ (O,—%) and
901<LL17%) = (1,%)

(4) p1(X2) C {(z

,y); ly| < 2}. Here we remark that (1) implies (4) be-
cause |pathy(z)] <

3 for z € X,
Next we choose a large integer ¢, satisfying that
(5) There is ko € Z, = {n € Z; n > 0} such that ¢u = koq1L;.
(6) If 21,29 € Xy and d(z1, 22) < 2/qq, then d(¢1(21), p1(22)) < 1/4.

(7) For 0y = qil + qiz, g20> and ¢y are relatively prime. For example, if
¢ = kq? for some k € Z,, then ¢0y = 1+ kq, and ¢o = kq} are
relatively prime.

Here we remark that ¢, is determined independent of the choice of ¢s.

We choose a smooth increasing function 7, : [2,1] — R so that 75(3/4) =
0y, m2(1) = 01 and 7y is constant on neighborhoods of 3/4 and 1. We define
a C* diffeomorphism f5 : X; — X; by

fi(z,y) outside ¢1(X5)
fo(z,y) = solRmutn;ofl(x,y) if (z,y) € ¢1(X2) and 3 < |21290I1(w,y)| <
()01R92901_ (may) if (l’,y) € 901(X2) and |p2(701_ (l’,y)| S %7

—_

where f; is well defined by (2). If ¢ is large enough, then f; is assumed

to be %l—closed to f1 in C?-topology. Let Ly = ¢ (L% — é) € Z. Then
1 1

= < q% because ¢o > L;. We define a simple closed curve

Ly1Ls 2q2—L1
Cg : R/LQZ — XQ by
@ (t, L1t — ) ifo<t< i+
Co(t) = 2 ILig Lo 1 o1 12
<—t+z7wﬁ(t—a>—é> it st<g

and Cy(t + %) = R Cy(t) for any t. Then Cs is invariant under Ry q,.
a2

10



X

C, p2(X3)

Figure 4: ¢ : Xo — X
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We define ¢,, and f, inductively as follows: We assume that f;, C;, L;,
G, Uiy 0; (i =1,2,-+- 'n—1)and @;, ¥; (i =1,2,--- ,n — 2) satisfying the
following conditions have already been given:

There is k,_1 € Z, such that ¢, 1 = k,_1qn_oL1 - Ly_o.
_ 2 1
Ly = In-1 (LILQ”'Ln—2 - qn—1) €Z

Cnfl : R/Lnflz - anl

(t,Ly- - Lyot — 1) ifo<t< —L :
Cn 1 t — 9 Ly L . Lo 1 . n—
(<4 i st (¢~ B - 8) i b <t <
C,_ (t—l— Ly 1> =R 1 Cnfl(t)-
dn—1

Pn— 2|€n 1 — wn ZMn 1 (ln Partlmﬂar, Son 2(671 1) *gn 2)

-1
nl_ZZ 1%

We define ¢,,_1 : X;, — X,,_1 by ¥n_1(z,y) = Cp1(Ly_12). Then 1, 4
maps X,, onto the curve C,,_;. Furthermore,

>

L,_
¢”_1Rl/Qn—1<x7y) = Cn—l (Ln—ll"i_ q 1)
n—1

Rl/Qn—IOn_l (Ln—lx)
= Rl/qn_1¢n—l<x7 y)'

Let £, denote the segment {(¢, LiLo- -+ L1t —1); 0 <t < £ 1} Then

Un_1(ln) = Ln_1. We choose a C*-embedding ¢, 1 : X,, — Xn,l along the
curve C,_1 satisfying

(1) d(r-+ Pu—20n-1(2,9), 01+ Pn2tni(z,y)) < 1/2""* for any (z,y) €
X, In particular, diam{e; --- ¢, _1(x,y); |y| < 1} < 1/2" because
{n_1(x,y); |y| < 1} consists of one point.

e R9 O

n—1

(2) Yn-10R1)g, , = Rijq,_, © Pn_1. In particular, ¢, _1 0 Ry
Pn—1-

(3) n-1lln = tn_1|ly. In particular, @, 1(€,) = Loy, Pu-1(0,—3) =
(07 _%) and wn—l(#[m_ﬂ %) = (ma %)

(4) pu1(Xn) C{(z9)3 Iyl < 3}

n—1

12



Let @, 1 = @10p90---0¢, 1 forn > 1 (Py =id). We choose a large integer
¢ satisfying that

(5) There is k, € Z, such that ¢, = k,qn_1L1---L,—1. In particular,
Gn > Ly --- L,_1. Further we assume that ¢, > 2n.
(6) If 21,20 € X, and d(z1, 22) < qﬂn, then d(®,,_1(21), Pp_1(22)) < 1/2™

(7) For 6, = >0, %, g0, and ¢, are relatively prime. For example,

if ¢, = kq,_1% and 0, = qin + %{7;_1 for some integers k and 7, then
O = 2205t Thus ¢u0, = 14 kjgu—1 and g, = kg?_, are relatively

prime.

Here we remark that ¢,_; has already been given independent of the choice
of ¢,.

We choose a smooth increasing function 7, : [2,1] — R so that n,(3/4) =
O, Nn(1) = 0,1 and 7, is constant on neighborhoods of 3/4 and 1. We define
a C* diffeomorphism f, : X1 — X, by

falz,y)
fnfl('ru y) outside (I)nfl(Xn)

=9 O 1Ry o @rli(z,y)  if (z,y) € Proi(Xy) and 2 < [po®) ! (z,y)| < 1
D, 1Ry, P! (2,9) if (z,y) € ®n1(X,) and [p2®@, L (z,y)] < 3

where f,, is well-defined by (2). We further assume that g, is so large that
fn is assumed to be 1/2"-closed to f, 1 in the C™-topology.

Let L, denote the integer defined by L, = ¢, < L1-~-2Ln_1 — q%) Then
1 1
B T 8
1 2 1 _ Ly
because —F— < 77— — padiiat Thus we have
1 1 1 1 2
< ——F<—<+——7~+—<—<--- <L

Lan Gn Lan Gn qn
We define a simple closed curve C,, : R/L,Z — X, by

et (t, Ly~ Ly it — 1) if 0<t< p—p—
n = 2 L1 Lp_1qn L, 1 . 1 n_Ln
(_t + Li-Lp_1’ q:L—Ll"'qun (t o q_n) o 5 lf LyLp—1 S t S q_n

and C,,(t + %) = R C,(t) for any t. Then C,, is invariant under Ry,. We

construct ¢, and f, (n =1,2,---) inductively in this way.

By the same argument as in [6] and [4], we can choose ¢, so large that f,
converges to a O diffeomorphism f as n — oo, and d(f*(x,y), f*(z,y)) <
1/2™ for any (x,y) € X; and 0 < k < g,.

Remark 1. We can extend f to a C'*° diffeomorphism of any surface.

13



4.5 Properties of the minimal set.

Let X =, ®,_1(X,,). Then X is not empty because
e C D (X)) C Oy (X)) C -

Furthermore, X contains the arc ¢; because ®,_1(¢,) = ¢;. On the other
hand, if (z,y) € Pr(Xks1) for some k € Z,, then f,(z,y) = fr(x,y) for
any n > k. Since ®,,_1(X,,) is connected, the set X is connected. Thus, in
order to prove Theorem 2, we have only to show that X is a minimal set
(Lemma 1) and X is not path-connected (Lemma 2).

L~

Proposition 2. For the subsets D} = {(z,y) € X, ; qin <z < Zq—nl} (1 =

0,1, , ¢, — 1), the diameter of ®,,_1(D}) is less than 3.

Proof. Let z1,29 € D. Let z; = (p1(21),0) and 25 = (pi(22),0). Since

d(2), 23) < -, we have d(®,,—1(2]), ©n1(23)) < 5z by (6). Since {tn_1(z,y); [y]

1} consists of one point, 1,—1(2;) = ¥,—1(2}) for i = 1,2. Thus

(2

A(Pr_1(2:), Puo1(2) < d(Ppo1(2i), Pr—otn—1(2:)) + d(Pr_2¥p_1(2]), Pr1(

1 1
on+2 + on+2
1
gn+1

<

for i = 1,2 by (1). Therefore

d(Py-1(21), Pr1(22))
< d(f)nl(zl)a Dy, 1(2))) + d(Pr1(2)), Pro1(25)) + d(Pr1(23), Pr1(22))

Proposition 3. For any z of X,
fi(z) = @i Ry 9.1 (2)
forn,j €Z,.

Proof. Since z € ®,_19,(Xnt1), we have |p®, ()] < 2 by (4). Therefore,
fa(z) = ®,_1 Ry, @, (2). Furthermore, if fi(z) = ®,_R) ®,1,(2) for some

n—1

j € Zy, then |p2®, 1, fi(2)] = [p2R) ®,11(2)] < 2 and fi(z) € ®po1(Xa).
Thus fitl(z) = @,_1 Ry, 0,11 fi(2) = @, R (2). ]

14
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Lemma 1. X is a minimal set of f.

Proof. First prove that X is invariant under f. Let z € X. We fix n €
Z.. If k > n, then fi(2) = ®,_1Rs @' (2) by Proposition 3. Thus
fe(2) = @, 1(pn o0 pp1)Re, @' (2) € ®,_1(X,,). Therefore f(2) =
limy,_oo f2(2) € ®,_1(X,,) for any n, and thus f(z) € X. Since f7'(z) =
limg oo f5 *(2), we can show that f~1(z) € X. Thus f(X) = X.

Let z and u be points of X. Let n be an arbitrary positive integer. Let
zn = ®1,(2) € X,, and u,, = &', (u) € X,,. Then thereis i (0 <i < ¢,)
such that u, € DI = {(x,y) € X,,; qin <z< ’;r—nl} For 0, = 2—2, the integers
Jn and g, are relatively prime by (7). Thus there is k € Z (0 < k < ¢y,)
such that Rf (z,) € Df. Since diam ®,,_1(D}') < 1/2"~! by Proposition 2,
we have d(®,_ 1R (2n), Pri(uy)) < 1/2771

On the other hand, by Proposition 3, d(f*(z2),u) = d(®,_RE &', (2),

n N

1
1 _
d(@n,lR’gn(zn),q)n,l(un)) < 1/2" 71 as above. Since d(f*(z2), f¥(2))

n

for 0 < k < g, by construction, we conclude that d(f*(z),u) < 2.

1

u)
/2"

(2
<

We fix n > 1. Letvi:(qin,—%) EXnandwi:<m+qin,%) e X,

_ _ (i _1 _ 1 i1
fori =1,2,--- ;n. Let v] = (q_n7_§) € X1 and w, = <m+q7>§) €
Xpyp for i = 1,2,--+  n. Then p(v]) < pr(w)) < p1(vh) < pr(wh) < ---

because Lll—Ln < qin (see (8)).

Proposition 4. ¢, (v)) = v; and ¥, (w)) = w;.

Proof. ¥ (v) = %(q%a‘—%) = Cu(if2) = (Ryyy,)'Ca(0) ='(q%7—%) = v;.
@/}n(w;) = @Dn(ﬁ + qL7 %) = Cn(Ll"'Lnfl + Zann) - (Rl/qnycn([,l...lLRA) =
(rs b = .

Lemma 2. X is not path-connected.

Proof. Let z; = (1,;) € X, and zy = (;,—%) € X;. The point 2; is an
end point of £. Thus 2, € X. Furthermore, ®,(;—7-,3) = 2 for any
n € Z, because ®,(lps1) = €1 by (3). On the other hand, for any j > 1,
03(22) = 9i(2,~4) = Ragy(0,—8) = Ra(0,—4) = (2,~4) = 2 by (2).
Thus @, (1, —1) = 2 for any n € Z and 2, € X.

Assume that there is a path + connecting z; and 25 contained in X. We
further assume that ~ : [0, 1] — X is homotopic to t — (1 — 3¢, 5 — ) in X;
with the boundary fixed (we can prove similarly in the other cases).

Let N denote the number of connected components of yNpy'(—1,1)
such that one of the boundary points is contained in p; (——) and the other

boundary point is contained in p;' ().
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We choose an integer n satisfying 2n — 2 > N and n > 3. Let v, =
®,'(y). Then 7,41 connects (p=z—,3) with (-, —3) in X,41 as above. By

(8) and (5), we obtain

SRR O S S SR T DU BRSE §
Ly---Ln G @u Li--Ln G G Li--Ln  gn @
We choose points a; € X, 14 inpl_l(qin)ﬂ%ﬂ fori=1,2,--- ,n and points
by € Xpy1 in pl’l(qj—; + L1~-1-Ln) N Ypy1 for j =1,2,--- ,n— 1 so that there are

s; and t; of [0,1] satisfying a} = v,11(si), b} = Var1(t;) and
0<s1 <t <8 <tag< - <tyh_1<s, <Ll

For i = 1,2,---,n, d(®,(v)),®,(a})) < 1/2""2 by (1). Furthermore,

d(P,(v)), @p1(v;)) = d( P10 (V]), P10, (v))) < 1/2"3 again by (1) and
Proposition 4. Furthermore, d(®,_1(v;), (0, —1)) < 1/2" by (6). As a result,
1 1 1 1 1

!
pQ(I)n(ai) < _5 + 2_n + 2n+3 + 2n+2 < 4

when n > 3.

On the other hand, for j = 1,2, ,n—1, d(®,(w}), ®,(b})) < 1/2"* by
(1) and d(@u (1), Br (1)) = (B 15 (1), B 1t (1)) < 1/2°% by (1)
and Proposition 4. Since d(®,—1(w;), (1,3)) = d(Pp-1(w;), Pn1(77—1 3))
1/2™ by (6), we have

1
P@ult)) >3 = = 5 — s >

when n > 3.

The points @, (a) and @, (b;) of v satisty ps®,,(a;) < —1 and py®, () >
1. Therefore, there are at least 2n—2 connected components of yNp; ' (=1, 1)
such that one of the boundaries is contained in p; ' (—1) and the other bound-
ary point is contained in p, 1(i). However, this contradicts the assumption,

2n—2> N. [ |

Remark 2. A locally connected complete metric space is path-connected (see
[7] §50). Thus the minimal set of Theorem 2 is not locally connected.
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