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Abstract

The Warsaw circle is obtained by joining the boundary of the clo-
sure of the graph of sin 1/x (−1/π ≤ x ≤ 1/π). It is well-known
as an example of a connected but not path-connected compact set.
Inserting such components almost everywhere along the circle, we ob-
tain the Warsaw circle with infinitely many singular arcs, denoted by
X. In 1955, Gottschalk and Hedlund introduced in their book that
Jones constructed a minimal homeomorphism on this set. However
this homeomorphism is defined only on this set. In 1991, Walker first
constructed a homeomorphism of S1 ×R whose minimal set is home-
omorphic to X. However, his homeomorphism cannot be a diffeomor-
phism by Theorem 1. In this paper, we will construct a C∞ diffeomor-
phism of S1 × R with a compact connected but not path-connected
minimal set containing arcs (Theorem 2). In order to construct a C∞

diffeomorphism, we use the approximation by conjugation method.
The key point of the construction is the fact that the Warsaw circle
is an inverse limit of circles.

1 Introduction

In order to examine the dynamical properties of homeomorphisms, compact
invariant sets are keys to consider the asymptotic behavior of orbits. A
minimal set is a compact invariant set which is minimal with respect to
the inclusion. The minimal sets play important roles as cores of compact
invariant sets.

∗Partially supported by Grant-in-Aid for Scientific Research (No. 23540104), Japan
Society for the Promotion of Science, Japan
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In low dimensional dynamical systems, only few topological types of min-
imal sets have been found (Problem 1.6 in [3]). In this paper, we consider
whether the Warsaw circle with infinitely many singular arcs (Figure 1) can
be a minimal set of a surface diffeomorphism.

Figure 1: The Warsaw circle with infinitely many singular arcs

The Warsaw circle is the set obtained from the closure of the graph of

y = sin
1

x
(−1/π ≤ x ≤ 1/π, x ̸= 0)

by identifying the ends. We call {(0, y) ; |y| ≤ 1} a singular arc. The Warsaw
circle is famous as an example of a connected but not path-connected set.
A Warsaw circle with infinity many singular arcs is obtained by inserting
infinity many such singular arcs along the circle, denoted by X (the precise
definition will be given in §2).

In 1955, Gottschalk and Hedlund introduced in their book ([5]) that Jones
constructed a minimal homeomorphism of X (that is, the whole set X is a
minimal set). Although this set X was embedded in S1 × R, the homeo-
morphism is defined only on the set X. In 1991, Walker ([9]) constructed
a homeomorphism of S1 × R whose minimal set is homeomorphic to X.
However, his homeomorphism cannot be differentiable because the singular
arcs keep the vertical directions invariant and the minimality destroys the
differential structure (Theorem 1).

In this paper, we will construct a C∞ diffeomorphism of S1 × R with
a compact connected but not path-connected minimal set containing arcs
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(Theorem 2). In order to prove Theorem 2, we use the approximation by
conjugation method (see [2] and [4]). The key point of our construction is
the fact that the Warsaw circle with infinitely many singular arcs is an inverse
limit of circles as the Warsaw circle is (see §4). Thus we can construct such a
diffeomorphism in the same manner as Handel constructed a diffeomorphism
of a surface whose minimal set is a pseudo-circle ([6]).

The author would like to thank Shigenori Matsumoto for his helpful com-
ments on the first manuscript.

2 Statement of results

First recall the homeomorphism of Gottschalk and Hedlund, which was in-
troduced in §14 of [5] as an example communicated by Jones.

We parametrize the circle by S1 = R/Z. Let χ0 : S1 − {0} → R denote
the function defined by{

χ0(x) = sin 1
x

if − 1
π
≤ x ≤ 1

π
, x ̸= 0,

χ0(x) = 0 if 1
π
≤ |x| ≤ 1

2
.

Then the closure of the graph of χ0 is called the Warsaw circle, denoted by
X0.

Let ω be an irrational number. Let Λ = {nω mod Z; n ∈ Z}. We choose
a sequence {cn}n∈Z of positive numbers satisfying

∑
n∈Z cn < ∞. We define

a function χω : S1 − Λ → R by

χω(x) =
∑
n∈Z

cnχ0(x − nω).

For m ∈ Z, the arc{
(mω, y) ∈ S1 × R ; −cm ≤ y −

∑
n∈Z,n ̸=m

cnχ0(x − nω) ≤ cm

}

is called a singular arc for m ∈ Z, and the closure of the graph of χω is
called the Warsaw circle with infinitely many singular arcs, denoted by X.
For x ̸∈ Λ, χω is continuous at x ([5]). Thus X is the union of the graph of
χω and singular arcs Sm (m ∈ Z).

The rotation by ω on S1 induces a homeomorphism on graph χω. By
[5], this homeomorphism is uniformly continuous on graphχω, and thus it
can be extended on the closure of the graph of χω. This is the minimal
homeomorphism of X introduced in [5].
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On the other hand, we assume that f is a homeomorphism of S1×R such
that X is a minimal set of f . Then f maps each singular arc onto a singular
arc. Let pi (i = 1, 2) denote the projection to the i-th factor of S1×R. Then
we can define an induced homeomorphism ρf : S1 → S1 by ρf (x) = p1f(x, y)
for any (x, y) ∈ X.

Theorem 1. Let ω be an irrational number. Let {cn}n∈Z be a sequence of
positive numbers satisfying

∑
n∈Z cn < ∞. Let X denote the closure of the

graph of χω. If cn satisfies that lim supn→∞
cn+1

cn
≤ 1 and lim supn→−∞

cn

cn+1
≤

1, then there is no C1-diffeomorphism f of S1 × R such that the induced
homeomorphism ρf of S1 is a rotation and X is a minimal set of f .

For the homeomorphism f constructed by Walker, ρf is a rotation and
cn = 1

2|n| . Thus this cannot be of class C1 by Theorem 1.

Theorem 2. There is a C∞ diffeomorphism f of S1 × R with a compact
connected but not path-connected minimal set containing arcs.

3 Necessary conditions

In this section, we will prove Theorem 1. We assume that there is a C1

diffeomorphism f of S1 ×R such that the induced homeomorphism ρf of S1

is a rotation and X = graph χω is a minimal set for an irrational number ω.
In the following, we will deduce the contradiction.

Let Ω+ = {(x, y) ; y > y0 for any (x, y0) ∈ X}. Since S1×R−X consists
of two connected open sets, Ω+ is invariant under f or f 2.

Proposition 1. X is a minimal set of f 2.

Proof. Suppose that there is a compact subset C of X invariant under f2.
Then C∪f(C) is invariant under f , and thus C∪f(C) = X. Since C∩f(C)
is also invariant under f , either X = C or C ∩ f(C) = ∅ holds. Now X is
connected. Thus C ∩ f(C) is not empty, and thus X = C. Therefore X is a
minimal set of f 2. ¥

Thus we have only to prove Theorem 1 when f(Ω+) = Ω+.

Proof of Theorem 1. Let Sn = p−1
1 (nω) ∩ X. Since f(S0) is a singular arc,

there is n0 ∈ Z such that f(S0) = Sn0 . Thus ρf (0) = n0ω. We choose a
universal covering ρ̃f of ρf so that ρ̃f (0) = n0ω. Then ρ̃f (x) = x + n0ω for
any x ∈ R because ρf is a rotation. As a consequence, f(Si) = Si+n0 for any
i ∈ Z.
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We assume that n0 > 0. We can prove the other case similarly.
Let (x, y) be a point of X such that p−1

1 (x) ∩ X consists of one point,
i. e. x ̸∈ Λ. We take an arbitrary ε > 0 and an arbitrary neighborhood
W of (x, y) in S1 × R. Since p−1

1 (x) ∩ X consists of one point, there is a
neighborhood U of x in S1 such that p−1

1 (U) ∩ X is contained in W . Since
lim supn→∞

cn+1

cn
≤ 1, there is I > 0 such that ci+1

ci
< n0

√
1 + ε for any i ≥ I.

We choose an integer i0 greater than or equal to I such that i0ω ∈ U . Then
Si0 is contained in W . By the mean value theorem, there is zi0 of Si0 such
that ∂ p2◦f

∂y
(zi0) =

ci0+n0

ci0
. Now

ci0+n0

ci0

=
ci0+1

ci0

ci0+2

ci0+1

· · · ci0+n0

ci0+n0−1

< 1 + ε.

Thus we conclude that, for any ε and neighborhood W of (x, y), there is a
point in W such that ∂ p2◦f

∂y
< 1 + ε. Since ε and W can be chosen so small,

we obtain ∂ p2◦f
∂y

(x, y) ≤ 1.

The set {(x, y) ; p−1
1 (x) ∩ X consists of one point} is dense in X. Thus

∂ p2◦f
∂y

is less than or equal to 1 on the whole X. Now f(Si) = Si+n0 for
any i ∈ Z. Thus we obtain · · · ≥ c−2n0 ≥ c−n0 ≥ c0 ≥ · · · . However this
contradicts the assumption

∑
n∈Z cn < ∞. ¥

4 C∞ construction

4.1 The Warsaw circle is an inverse limit of circles.

We start from showing that the Warsaw circle is an inverse limit of circles:
Let an = 2

(4n−1)π
for n = 1, 2, · · · . Then sin 1

an
= −1. We define a function

gn : [−1
2
, 1

2
] → R (n = 1, 2, · · · ) by

gn(x) =


sin 1

x+an
if 0 < x ≤ 1

π
− an

− sin 1
−x+an

if an − 1
π
≤ x < 0

0 if 1
π
− an ≤ |x| ≤ 1

2
or x = 0

(see Figure 2). Let Yn denote the set obtained by first identifying the end
points (−1

2
, 0) and (1

2
, 0) of the graph of gn and then adding the interval

{0}× [−1, 1]. Then Yn is homeomorphic to the circle. We define a projection
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Figure 2: The Warsaw circle is a circle inverse limit

πn : Yn+1 → Yn by

πn(x, y) =



(
1/2−1/π+an

1/2−1/π+an+1
(x − 1

2
) + 1

2
, 0

)
if 1

π
− an+1 ≤ x ≤ 1

2

(x + an+1 − an, y) if an − an+1 ≤ x ≤ 1
π
− an+1

(0, y) if an+1 − an ≤ x ≤ an − an+1

(x + an − an+1, y) if − 1
π

+ an+1 ≤ x ≤ an+1 − an(
1/2−1/π+an

1/2−1/π+an+1
(x + 1

2
) − 1

2
, 0

)
if − 1

2
≤ x ≤ − 1

π
+ an+1.

That is, the map πn collapses the subset {(x, y) ; an+1 −an ≤ x ≤ an −an+1}
into the y-axis horizontally.

For the Warsaw circle X0, we define hn : X0 → Yn by

hn(x, y) =



(
1/π−an−1/2

1/π−1/2
(x − 1

2
) + 1

2
, y

)
if 1

π
≤ x ≤ 1

2

(x − an, y) if an ≤ x ≤ 1
π

(0, y) if |x| ≤ an

(x + an, y) if − 1
π
≤ x ≤ −an(

−1/π+an+1/2
−1/π+1/2

(x + 1
2
) − 1

2
, y

)
if − 1

2
≤ x ≤ − 1

π
.
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Then πn ◦ hn+1 = hn. The maps {hn} induce a homeomorphism from the
Warsaw circle to the inverse limit (Yn, πn).

4.2 Inverse limit of circles for the construction.

Inverse limits of circles are adequate to make minimal dynamical systems.
However the above structure is not convenient for our purpose by Theorem 1.
Thus we introduce an inverse limit of circles whose singular arcs are not
vertical for the Warsaw circle with infinitely many singular arcs in order to
prove Theorem 2.

Let q1 = 2. We choose large positive integers qn (n = 1, 2, · · · ) inductively.
Let Ln denote the positive numbers defined by L1 = 3 and

Ln = qn

(
2

L1L2 · · ·Ln−1

− 1

qn

)
for n > 1. Although we need several conditions on qn for our construction,
we only assume here that qn = knqn−1L1L2 · · ·Ln−1 for some kn ∈ Z+. In
particular, qn is a multiple of qn−1 and Ln is an integer. Let Xn = {(x, y) ; x ∈
R/Z, |y| ≤ 1} and let pi denote the i-th projection of Xn (i = 1, 2). Let Rθ

denote the θ-rotation Rθ(x, y) = (x + θ, y) in Xn. We define a simple closed
curve Cn : R/LnZ → Xn by

Cn(t) =

{
(t, L1 · · ·Ln−1t − 1

2
) if 0 ≤ t ≤ 1

L1···Ln−1(
−t + 2

L1···Ln−1
, L1···Ln−1qn

qn−L1···Ln
(t − Ln

qn
) − 1

2

)
if 1

L1···Ln−1
≤ t ≤ Ln

qn

and Cn

(
t + Ln

qn

)
= R 1

qn
Cn(t) (see Figure 3).

Then Cn(0) = (0,−1
2
), Cn( 1

L1···Ln−1
) = ( 1

L1···Ln−1
, 1

2
), Cn(Ln

qn
) = ( 1

qn
,−1

2
)

and Cn connects these points by line segments. Let ℓn = {Cn(t) ; 0 ≤ t ≤
1

L1L2···Ln−1
}. The slope of ℓn is L1 · · ·Ln−1, which tends to ∞ very fast as

n → ∞. Furthermore, the curve Cn is invariant under R 1
qn

and is contained

in R/Z × [−1/2, 1/2]. If we further assume that qn < L1L2 · · ·Ln, then we
obtain

0 <
1

L1 · · ·Ln

<
1

qn

<
1

L1 · · ·Ln

+
1

qn

<
2

qn

< · · · < 1.

Let ψn : Xn+1 → Xn denote the map defined by ψn(x, y) = Cn(Lnx).
Notice that ψn(ℓn+1) = ℓn and ψn commutes with R 1

qn
. The latter implies

that ψn commutes with Rθn since θn is a multiple of 1
qn

.

We define a continuous map Ψn : S1 → S1 by Ψn(t) = p1Cn+1(Ln+1t).
Then ψn(Cn+1(Ln+1t)) = Cn(LnΨn(t)) because, for (x, y) = Cn+1(Ln+1t),
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Figure 3: Circles Cn

ψn(x, y) = Cn(Lnx) = Cn(LnΨn(t)). Thus the following diagram commutes.

S1 Cn+1(Ln+1t)−→ Xn+1

Ψn ↓ © ↓ ψn

S1 Cn(Lnt)−→ Xn

We will use the inverse limit (S1, Ψn) as a core for the construction of a C∞

diffeomorphism in Theorem 2 (see [1]).

4.3 Overview of the construction.

We give an angle θn ∈ R/Z by θn =
∑n

i=1
1
qi

for n = 1, 2, · · · . We choose a
C∞ embedding ϕn : Xn+1 → Xn sufficiently near ψn satisfying
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(a) Rθn ◦ ϕn = ϕn ◦ Rθn ,

(b) ϕn(ℓn+1) = ℓn,

(c) ϕn(Xn+1) ⊂ {(x, y) ∈ Xn ; |y| < 3
4
}.

Let Φn = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn. Then Φ1(X2) ⊃ Φ2(X3) ⊃ · · · . We will give a
diffeomorphism fn : X1 → X1 satisfying

(d) fn+1 = fn outside Φn(Xn+1) and

(e) fn+1(x, y) = ΦnRθn+1Φ
−1
n (x, y) if (x, y) ∈ Φn(Xn+1) and Φ−1

n (x, y) ∈
{(x, y) ; |y| ≤ 3

4
}.

If we choose fn+1 sufficiently near fn, then we can show that fn converges
to a C∞ diffeomorphism f of X1 as n → ∞. The proof is based on the
comparison of fn and fn+1 in the middle part. Thanks to the condition
Rθn ◦ ϕn = ϕn ◦ Rθn , the equation fn−1 = Φn−1RθnΦ−1

n−1 can be written as
ΦnRθnΦ−1

n , while fn = ΦnRθn+1Φ
−1
n . The crucial point is that we can choose

the number qn+1 after the construction of Φn. Letting |θn+1−θn| small enough
compared with Φn, we get the desired convergence.

In the following, we will give the precise construction of f and will show
that

∩
n Φn(Xn+1) is a connected but not path-connected minimal set of f

containing the arc ℓ1.

4.4 Precise construction.

Let Xn = {(x, y) ; x ∈ R/Z, |y| ≤ 1} for n = 1, 2, · · · . Let d denote the metric
of Xn induced from the Euclidean metric, and let diam F denote the diameter
of a set F . We define the rotation Rθ : Xn → Xn by Rθ(x, y) = (x + θ, y).

Let q1 = 2 and θ1 = 1
q1

. We define f1 : X1 → X1 by f1(x, y) = Rθ1(x, y)

for x ∈ R/Z and |y| ≤ 1. Let L1 = 3. We define a simple closed curve
C1 : R/L1Z → X1 by

C1(t) =

{
(t, t − 1

2
) if 0 ≤ t ≤ 1

(−t + 2, q1

q1−L1

(
t − L1

q1

)
− 1

2
) if 1 ≤ t ≤ L1

q1

and C1(t + L1

q1
) = R1/q1C1(t) for any t ∈ R/L1Z (see Figure 3). Then L1

is the length of p1 ◦ C1 and C1 is invariant under R1/q1 . Let ℓ1 denote the
segment {(t, t − 1

2
) ; 0 ≤ t ≤ 1}.

We define ψ1 : X2 → X1 by ψ1(x, y) = C1(L1x). Then ψ1 ◦ R1/q1 =
R1/q1 ◦ ψ1. Let ℓ2 = {(t, L1t − 1

2
) ; 0 ≤ t ≤ 1

L1
}. Then ψ1 maps ℓ2 onto ℓ1.

We choose a C∞ embedding ϕ1 : X2 → X1 along the curve C1 satisfying
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(1) d(ϕ1(x, y), ψ1(x, y)) < 1/16 for any (x, y) ∈ X2. In particular,

diam{(x, y) ; ϕ1(x, y) ; |y| ≤ 1} <
1

8

because {ψ1(x, y) ; |y| ≤ 1} consists of one points.

(2) ϕ1 ◦ R1/q1 = R1/q1 ◦ ϕ1 (i. e. ϕ1 ◦ Rθ1 = Rθ1 ◦ ϕ1).

(3) ϕ1|ℓ2 = ψ1|ℓ2. In particular, ϕ1(ℓ2) = ℓ1, ϕ1(0,−1
2
) = (0,−1

2
) and

ϕ1(
1

L1
, 1

2
) = (1, 1

2
).

(4) ϕ1(X2) ⊂ {(x, y) ; |y| < 3
4
}. Here we remark that (1) implies (4) be-

cause |p2ψ1(z)| ≤ 1
2

for z ∈ X2.

Next we choose a large integer q2 satisfying that

(5) There is k2 ∈ Z+ = {n ∈ Z ; n > 0} such that q2 = k2q1L1.

(6) If z1, z2 ∈ X2 and d(z1, z2) ≤ 2/q2, then d(ϕ1(z1), ϕ1(z2)) < 1/4.

(7) For θ2 = 1
q1

+ 1
q2

, q2θ2 and q2 are relatively prime. For example, if

q2 = kq2
1 for some k ∈ Z+, then q2θ2 = 1 + kq1 and q2 = kq2

1 are
relatively prime.

Here we remark that ϕ1 is determined independent of the choice of q2.
We choose a smooth increasing function η2 : [3

4
, 1] → R so that η2(3/4) =

θ2, η2(1) = θ1 and η2 is constant on neighborhoods of 3/4 and 1. We define
a C∞ diffeomorphism f2 : X1 → X1 by

f2(x, y) =


f1(x, y) outside ϕ1(X2)
ϕ1Rη2(|t|)ϕ

−1
1 (x, y) if (x, y) ∈ ϕ1(X2) and 3

4
≤ |p2ϕ

−1
1 (x, y)| ≤ 1

ϕ1Rθ2ϕ
−1
1 (x, y) if (x, y) ∈ ϕ1(X2) and |p2ϕ

−1
1 (x, y)| ≤ 3

4
,

where f2 is well defined by (2). If q2 is large enough, then f2 is assumed

to be 1
4
-closed to f1 in C2-topology. Let L2 = q2

(
2

L1
− 1

q2

)
∈ Z. Then

1
L1L2

= 1
2q2−L1

< 1
q2

because q2 > L1. We define a simple closed curve

C2 : R/L2Z → X2 by

C2(t) =

{
(t, L1t − 1

2
) if 0 ≤ t ≤ 1

L1(
−t + 2

L1
, L1q2

q2−L1L2
(t − L2

q2
) − 1

2

)
if 1

L1
≤ t ≤ L2

q2

and C2(t + L2

q2
) = R 1

q2

C2(t) for any t. Then C2 is invariant under R1/q2 .

10



Figure 4: ϕ1 : X2 → X1
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We define ϕn and fn inductively as follows: We assume that fi, Ci, Li,
qi, ℓi, θi (i = 1, 2, · · · , n − 1) and ϕi, ψi (i = 1, 2, · · · , n − 2) satisfying the
following conditions have already been given:

There is kn−1 ∈ Z+ such that qn−1 = kn−1qn−2L1 · · ·Ln−2.

Ln−1 = qn−1

(
2

L1L2···Ln−2
− 1

qn−1

)
∈ Z.

Cn−1 : R/Ln−1Z → Xn−1
Cn−1(t) =

{
(t, L1 · · ·Ln−2t − 1

2
) if 0 ≤ t ≤ 1

L1···Ln−2(
−t + 2

L1···Ln−2
, L1···Ln−2qn−1

qn−1−L1···Ln−1
(t − Ln−1

qn−1
) − 1

2

)
if 1

L1···Ln−2
≤ t ≤ Ln−1

qn−1

Cn−1

(
t + Ln−1

qn−1

)
= R 1

qn−1

Cn−1(t).

ℓi =
{(

t, L1 · · ·Li−1t − 1
2

)
; 0 ≤ t ≤ 1

L1···Li−1

}
(i = 2, 3, · · · , n − 1).

ϕn−2|ℓn−1 = ψn−2|ℓn−1 (in particular, ϕn−2(ℓn−1) = ℓn−2).
θn−1 =

∑n−1
i=1

1
qi

.

We define ψn−1 : Xn → Xn−1 by ψn−1(x, y) = Cn−1(Ln−1x). Then ψn−1

maps Xn onto the curve Cn−1. Furthermore,

ψn−1R1/qn−1(x, y) = Cn−1

(
Ln−1x +

Ln−1

qn−1

)
= R1/qn−1Cn−1(Ln−1x)

= R1/qn−1ψn−1(x, y).

Let ℓn denote the segment {(t, L1L2 · · ·Ln−1t − 1
2
) ; 0 ≤ t ≤ 1

L1···Ln−1
}. Then

ψn−1(ℓn) = ℓn−1. We choose a C∞-embedding ϕn−1 : Xn → Xn−1 along the
curve Cn−1 satisfying

(1) d(ϕ1 · · ·ϕn−2ϕn−1(x, y), ϕ1 · · ·ϕn−2ψn−1(x, y)) < 1/2n+2 for any (x, y) ∈
Xn, In particular, diam{ϕ1 · · ·ϕn−1(x, y) ; |y| ≤ 1} < 1/2n+1 because
{ψn−1(x, y) ; |y| ≤ 1} consists of one point.

(2) ϕn−1 ◦ R1/qn−1 = R1/qn−1 ◦ ϕn−1. In particular, ϕn−1 ◦ Rθn−1 = Rθn−1 ◦
ϕn−1.

(3) ϕn−1|ℓn = ψn−1|ℓn. In particular, ϕn−1(ℓn) = ℓn−1, ϕn−1(0,−1
2
) =

(0,−1
2
) and ϕn−1(

1
L1···Ln−1

, 1
2
) = ( 1

L1···Ln−2
, 1

2
).

(4) ϕn−1(Xn) ⊂ {(x, y) ; |y| < 3
4
}.
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Let Φn−1 = ϕ1 ◦ϕ2 ◦ · · · ◦ϕn−1 for n > 1 (Φ0 = id). We choose a large integer
qn satisfying that

(5) There is kn ∈ Z+ such that qn = knqn−1L1 · · ·Ln−1. In particular,
qn > L1 · · ·Ln−1. Further we assume that qn > 2n.

(6) If z1, z2 ∈ Xn and d(z1, z2) ≤ n
qn

, then d(Φn−1(z1), Φn−1(z2)) < 1/2n.

(7) For θn =
∑n

i=1
1
qi

, qnθn and qn are relatively prime. For example,

if qn = kqn−1
2 and θn = 1

qn
+ j

qn−1
for some integers k and j, then

θn = 1+kjqn−1

kqn−1
2 . Thus qnθn = 1 + kjqn−1 and qn = kq2

n−1 are relatively
prime.

Here we remark that ϕn−1 has already been given independent of the choice
of qn.

We choose a smooth increasing function ηn : [3
4
, 1] → R so that ηn(3/4) =

θn, ηn(1) = θn−1 and ηn is constant on neighborhoods of 3/4 and 1. We define
a C∞ diffeomorphism fn : X1 → X1 by
fn(x, y)

=


fn−1(x, y) outside Φn−1(Xn)
Φn−1Rηn(|t|)Φ

−1
n−1(x, y) if (x, y) ∈ Φn−1(Xn) and 3

4
≤ |p2Φ

−1
n−1(x, y)| ≤ 1

Φn−1RθnΦ−1
n−1(x, y) if (x, y) ∈ Φn−1(Xn) and |p2Φ

−1
n−1(x, y)| ≤ 3

4
,

where fn is well-defined by (2). We further assume that qn is so large that
fn is assumed to be 1/2n-closed to fn−1 in the Cn-topology.

Let Ln denote the integer defined by Ln = qn

(
2

L1···Ln−1
− 1

qn

)
. Then

1

L1 · · ·Ln

<
1

qn

· · · · · · · · · · · · · · · · · · (8)

because 1
L1···Ln−1

< 2
L1···Ln−1

− 1
qn

= Ln

qn
. Thus we have

0 <
1

L1 · · ·Ln

<
1

qn

<
1

L1 · · ·Ln

+
1

qn

<
2

qn

< · · · < 1.

We define a simple closed curve Cn : R/LnZ → Xn by

Cn(t) =

{
(t, L1 · · ·Ln−1t − 1

2
) if 0 ≤ t ≤ 1

L1···Ln−1

(−t + 2
L1···Ln−1

, L1···Ln−1qn

qn−L1···Ln
(t − Ln

qn
) − 1

2
if 1

L1···Ln−1
≤ t ≤ Ln

qn

and Cn(t + Ln

qn
) = R 1

qn
Cn(t) for any t. Then Cn is invariant under Rθn . We

construct ϕn and fn (n = 1, 2, · · · ) inductively in this way.
By the same argument as in [6] and [4], we can choose qn so large that fn

converges to a C∞ diffeomorphism f as n → ∞, and d(fk(x, y), fk
n(x, y)) <

1/2n for any (x, y) ∈ X1 and 0 ≤ k ≤ qn.

Remark 1. We can extend f to a C∞ diffeomorphism of any surface.
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4.5 Properties of the minimal set.

Let X =
∩∞

n=2 Φn−1(Xn). Then X is not empty because

· · · ⊂ Φn(Xn+1) ⊂ Φn−1(Xn) ⊂ · · · .

Furthermore, X contains the arc ℓ1 because Φn−1(ℓn) = ℓ1. On the other
hand, if (x, y) ̸∈ Φk(Xk+1) for some k ∈ Z+, then fn(x, y) = fk(x, y) for
any n > k. Since Φn−1(Xn) is connected, the set X is connected. Thus, in
order to prove Theorem 2, we have only to show that X is a minimal set
(Lemma 1) and X is not path-connected (Lemma 2).

Proposition 2. For the subsets Dn
i = {(x, y) ∈ Xn ; i

qn
≤ x ≤ i+1

qn
} (i =

0, 1, · · · , qn − 1), the diameter of Φn−1(D
n
i ) is less than 1

2n−1 .

Proof. Let z1, z2 ∈ Dn
i . Let z′

1 = (p1(z1), 0) and z′2 = (p1(z2), 0). Since
d(z′1, z

′
2) ≤ 1

qn
, we have d(Φn−1(z

′
1), Φn−1(z

′
2)) < 1

2n by (6). Since {ψn−1(x, y) ; |y| ≤
1} consists of one point, ψn−1(zi) = ψn−1(z

′
i) for i = 1, 2. Thus

d(Φn−1(zi), Φn−1(z
′
i)) ≤ d(Φn−1(zi), Φn−2ψn−1(zi)) + d(Φn−2ψn−1(z

′
i), Φn−1(z

′
i))

<
1

2n+2
+

1

2n+2

=
1

2n+1

for i = 1, 2 by (1). Therefore

d(Φn−1(z1), Φn−1(z2))

≤ d(Φn−1(z1), Φn−1(z
′
1)) + d(Φn−1(z

′
1), Φn−1(z

′
2)) + d(Φn−1(z

′
2), Φn−1(z2))

<
1

2n−1
.

¥

Proposition 3. For any z of X,

f j
n(z) = Φn−1R

j
θn

Φ−1
n−1(z)

for n, j ∈ Z+.

Proof. Since z ∈ Φn−1ϕn(Xn+1), we have |p2Φ
−1
n−1(z)| < 3

4
by (4). Therefore,

fn(z) = Φn−1RθnΦ−1
n−1(z). Furthermore, if f j

n(z) = Φn−1R
j
θn

Φ−1
n−1(z) for some

j ∈ Z+, then |p2Φ
−1
n−1f

j
n(z)| = |p2R

j
θn

Φ−1
n−1(z)| < 3

4
and f j

n(z) ∈ Φn−1(Xn).

Thus f j+1
n (z) = Φn−1RθnΦ−1

n−1f
j
n(z) = Φn−1R

j+1
θn

Φ−1
n−1(z). ¥

14



Lemma 1. X is a minimal set of f .

Proof. First prove that X is invariant under f . Let z ∈ X. We fix n ∈
Z+. If k ≥ n, then fk(z) = Φk−1Rθk

Φ−1
k−1(z) by Proposition 3. Thus

fk(z) = Φn−1(ϕn ◦ · · · ◦ ϕk−1)Rθk
Φ−1

k−1(z) ∈ Φn−1(Xn). Therefore f(z) =
limk→∞ fk(z) ∈ Φn−1(Xn) for any n, and thus f(z) ∈ X. Since f−1(z) =
limk→∞ f−1

k (z), we can show that f−1(z) ∈ X. Thus f(X) = X.
Let z and u be points of X. Let n be an arbitrary positive integer. Let

zn = Φ−1
n−1(z) ∈ Xn and un = Φ−1

n−1(u) ∈ Xn. Then there is i (0 ≤ i < qn)
such that un ∈ Dn

i = {(x, y) ∈ Xn ; i
qn

≤ x ≤ i+1
qn

}. For θn = jn

qn
, the integers

jn and qn are relatively prime by (7). Thus there is k ∈ Z (0 ≤ k < qn)
such that Rk

θn
(zn) ∈ Dn

i . Since diam Φn−1(D
n
i ) < 1/2n−1 by Proposition 2,

we have d(Φn−1R
k
θn

(zn), Φn−1(un)) < 1/2n−1.
On the other hand, by Proposition 3, d(fk

n(z), u) = d(Φn−1R
k
θn

Φ−1
n−1(z), u) =

d(Φn−1R
k
θn

(zn), Φn−1(un)) < 1/2n−1 as above. Since d(fk(z), fk
n(z)) < 1/2n

for 0 ≤ k ≤ qn by construction, we conclude that d(fk(z), u) < 3
2n . ¥

We fix n ≥ 1. Let vi =
(

i
qn

,−1
2

)
∈ Xn and wi =

(
1

L1···Ln−1
+ i

qn
, 1

2

)
∈ Xn

for i = 1, 2, · · · , n. Let v′
i =

(
i

qn
,−1

2

)
∈ Xn+1 and w′

i =
(

1
L1···Ln

+ i
qn

, 1
2

)
∈

Xn+1 for i = 1, 2, · · · , n. Then p1(v
′
1) < p1(w

′
1) < p1(v

′
2) < p1(w

′
2) < · · ·

because 1
L1···Ln

< 1
qn

(see (8)).

Proposition 4. ψn(v′
i) = vi and ψn(w′

i) = wi.

Proof. ψn(v′
i) = ψn( i

qn
,−1

2
) = Cn(iLn

qn
) = (R1/qn)iCn(0) = ( i

qn
,−1

2
) = vi.

ψn(w′
i) = ψn( 1

L1···Ln
+ i

qn
, 1

2
) = Cn( 1

L1···Ln−1
+ iLn

qn
) = (R1/qn)iCn( 1

L1···Ln−1
) =

( 1
L1···Ln−1

+ i
qn

, 1
2
) = wi. ¥

Lemma 2. X is not path-connected.

Proof. Let z1 = (1, 1
2
) ∈ X1 and z2 = (1

2
,−1

2
) ∈ X1. The point z1 is an

end point of ℓ1. Thus z1 ∈ X. Furthermore, Φn( 1
L1···Ln

, 1
2
) = z1 for any

n ∈ Z+ because Φn(ℓn+1) = ℓ1 by (3). On the other hand, for any j ≥ 1,
ϕj(z2) = ϕj(

1
q1

,−1
2
) = R 1

q1

ϕj(0,−1
2
) = R 1

q1

(0,−1
2
) = ( 1

q1
,−1

2
) = z2 by (2).

Thus Φn(1
2
,−1

2
) = z2 for any n ∈ Z+ and z2 ∈ X.

Assume that there is a path γ connecting z1 and z2 contained in X. We
further assume that γ : [0, 1] → X is homotopic to t 7→ (1 − 1

2
t, 1

2
− t) in X1

with the boundary fixed (we can prove similarly in the other cases).
Let N denote the number of connected components of γ ∩ p−1

2 (−1
4
, 1

4
)

such that one of the boundary points is contained in p−1
2 (−1

4
) and the other

boundary point is contained in p−1
2 (1

4
).
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We choose an integer n satisfying 2n − 2 > N and n ≥ 3. Let γn+1 =
Φ−1

n (γ). Then γn+1 connects ( 1
L1···Ln

, 1
2
) with ( 1

q1
,−1

2
) in Xn+1 as above. By

(8) and (5), we obtain

1

L1 · · ·Ln

<
1

qn

<
1

qn

+
1

L1 · · ·Ln

<
2

qn

< · · · <
n − 1

qn

+
1

L1 · · ·Ln

<
n

qn

<
1

q1

.

We choose points a′
i ∈ Xn+1 in p−1

1 ( i
qn

) ∩ γn+1 for i = 1, 2, · · · , n and points

b′j ∈ Xn+1 in p−1
1 ( j

qn
+ 1

L1···Ln
) ∩ γn+1 for j = 1, 2, · · · , n− 1 so that there are

si and tj of [0, 1] satisfying a′
i = γn+1(si), b′j = γn+1(tj) and

0 < s1 < t1 < s2 < t2 < · · · < tn−1 < sn < 1.

For i = 1, 2, · · · , n, d(Φn(v′
i), Φn(a′

i)) < 1/2n+2 by (1). Furthermore,
d(Φn(v′

i), Φn−1(vi)) = d(Φn−1ϕn(v′
i), Φn−1ψn(v′

i)) < 1/2n+3 again by (1) and
Proposition 4. Furthermore, d(Φn−1(vi), (0,−1

2
)) < 1/2n by (6). As a result,

p2Φn(a′
i) < −1

2
+

1

2n
+

1

2n+3
+

1

2n+2
< −1

4

when n ≥ 3.
On the other hand, for j = 1, 2, · · · , n−1, d(Φn(w′

j), Φn(b′j)) < 1/2n+2 by
(1) and d(Φn(w′

j), Φn−1(wj)) = d(Φn−1ϕn(w′
j), Φn−1ψn(w′

j)) < 1/2n+3 by (1)
and Proposition 4. Since d(Φn−1(wj), (1,

1
2
)) = d(Φn−1(wj), Φn−1(

1
L1···Ln−1

, 1
2
)) <

1/2n by (6), we have

p2Φn(b′j) >
1

2
− 1

2n
− 1

2n+3
− 1

2n+2
>

1

4

when n ≥ 3.
The points Φn(a′

i) and Φn(b′j) of γ satisfy p2Φn(a′
i) < −1

4
and p2Φn(b′j) >

1
4
. Therefore, there are at least 2n−2 connected components of γ∩p−1

2 (−1
4
, 1

4
)

such that one of the boundaries is contained in p−1
2 (−1

4
) and the other bound-

ary point is contained in p−1
2 (1

4
). However, this contradicts the assumption,

2n − 2 > N . ¥

Remark 2. A locally connected complete metric space is path-connected (see
[7] §50). Thus the minimal set of Theorem 2 is not locally connected.
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