不定積分あるいは定積分を求める問題では, $\int f(x)dx = \dots$ あるいは $\int_a^b f(x)dx = \dots$ のように問題が分かるように書くこと.不定積分の積分定数は C と書いておけばよい.

5-1. 次の不定積分を求めよ. ただし, $a > 0, b \in \mathbf{R}, n \neq -1$ とし, (2) は x > a の範囲で考える.

(1)
$$\int x \log x \, dx$$
 (2) $\int \frac{1}{x^2 - a^2} \, dx$ (3) $\int \sin^2 x \, dx$ (4) $\int (ax + b)^n \, dx$

ヒント:(2) は部分分数展開を用いる. つまり、 $\frac{1}{x^2-a^2} = \frac{p}{x-a} + \frac{q}{x+a}$ をみたす定数 p,q を求めて積分する.

5-2. (1) $f(x) = 3^x$ とおくとき、対数微分により f の導関数 f' を求めよ.

(2) 不定積分 $\int 3^x dx$ を求めよ.

5-3. 次の定積分の値を求めよ.

(1)
$$\int_{-1}^{1} \sqrt{x+1} \, dx$$
 (2) $\int_{-1}^{1} \frac{1}{1+x^2} \, dx$ (3) $\int_{2}^{3} \frac{1}{x^2-1} \, dx$ (4) $\int_{0}^{1} (x^2+1)^4 x \, dx$ (5) $\int_{1}^{e} \log x \, dx$ (6) $\int_{1}^{2} \frac{(\sqrt{x}+1)^2}{\sqrt{x}} \, dx$

ヒント:(2) は $x = \tan \theta$ とおいて置換積分. (4) は $t = x^2 + 1$ とおいて置換積分.

5-4. (1)
$$\lim_{\delta \to +0} \int_{\delta}^{1} \frac{1}{\sqrt{x}} dx$$
 を求めよ.

 $(2) \ a>0, 0<\delta<1 \ \text{とするとき}, \ I(\delta)=\int_{\delta}^{1}\frac{1}{x^{a}}\ dx\ を求めよ.$

(3) $\delta \to +0$ のとき $I(\delta)$ が収束するための a>0 の条件を求めよ. さらに収束する場合について、極限 $\lim_{\delta \to +0} I(\delta)$ の値を求めよ

$$\left[(3) \$$
のとき極限を $\int_0^1 rac{1}{x^a} \ dx$ と書く.これが広義積分の一つ. $\right]$

5-5. 次の極限値を求めよ.

(1)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{\frac{k}{n}}$$
 (2) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n+k}$

5-6. 次の不定積分, 定積分を求めよ. ただし, a は実数とする.

(1)
$$\int x(x^2+1)^a dx$$
 (2) $\int x^2 e^{-x} dx$ (3) $\int_0^{\pi/4} \tan^2 x dx$ (4) $\int_0^{\pi/4} \frac{1}{\cos^4 x} dx$

ヒント:(1) は a の値に関する場合分けをすること。(3), (4) は $\tan x = t$ とおいて置換積分せよ。

5-7. 部分分数展開により次の不定積分を求めよ.ただし,x>1の範囲で考える.

(1)
$$\int \frac{1}{(x^2-1)^2} dx$$
 (2) $\int \frac{1}{x^3-1} dx$

ヒント:(1) $\frac{1}{(x^2-1)^2} = \frac{p}{x-1} + \frac{q}{(x-1)^2} + \frac{r}{x+1} + \frac{s}{(x+1)^2}$ をみたす定数 p,q,r,s を求める.

(2)
$$\frac{1}{x^3-1} = \frac{p}{x-1} + \frac{s(2x+1)+t}{x^2+x+1}$$
 をみたす定数 p,s,t を求めることから. $(x^2+x+1)' = 2x+1$ に注意する.