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Abstract

Let (G;G0) = (U(n; n); U(p; q)) (p + q � n) be a reductive dual pair in the
stable range. We investigate theta lifts to G of unitary characters and holomorphic
discrete series representations of G0, in relation to the geometry of nilpotent orbits.
We give explicit formulas for their K-type decompositions. In particular, for the
theta lifts of unitary characters, or holomorphic discrete series with a scalar extreme
K 0-type, we show that theK structure of the resulting representations of G is almost
identical to the KC -module structure of the regular function rings on the closure of
the associated nilpotent KC -orbits in s, where g = k� s is a Cartan decomposition.
As a consequence, their associated cycles are multiplicity free.
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Introduction

Let G = Sp(2N;R) be a real symplectic group of rank N . A pair of subgroups G and
G0 is called a dual pair if G0 is the full centralizer of G in G and vice versa. We call the
pair (G;G0) a reductive dual pair if both G and G0 are reductive. In this paper, we will
be mainly concerned with the reductive dual pair

(G;G0) = (U(n; n); U(p; q)) � G = Sp(2N;R); (0.1)

where N = 2n(p+ q).

Let us consider the non-trivial double cover eG =Mp(2N;R) of G , called the metaplec-

tic group. For a subgroup L of G , we denote the pullback of L in eG by eL. The metaplectic
group eG has a distinguished unitary representation 
, which has various names appearing
in various references; it is called the oscillator representation, or sometimes the metaplec-
tic representation, the Weil (or Segal-Shale-Weil) representation, etc. 
 is very small, and

in fact, its two irreducible constituents are among the four minimal representations of eG
attached to the minimal (non-trivial) nilpotent orbit.

Using the oscillator representation 
, for a given irreducible admissible representation
�0 of fG0, Howe associates �0 with an irreducible admissible representation � of eG called
the theta lift of �0 ([4]). We shall denote this as � = �(�0) in this paper. Roughly saying,
� is the theta lift of �0 if and only if there is a non-trivial morphism


 �! � 
 �0 as a (g; eK)� (g0 �fK 0)-module, (0.2)

where g (respectively g0) is the complexi�cation of the Lie algebra of G (respectively G0)
and K (respectively K 0) is a maximal compact subgroup of G (respectively G0). The
morphism in (0.2) should be interpreted in the sense of Harish-Chandra modules. For a
precise de�nition of �(�0), see x4.1.

Assume that the pair (G;G0) is in the stable range with G0 the smaller member (see
[1, x5] for its de�nition). For (G;G0) = (U(n; n); U(p; q)), this assumption amounts to
p+ q � n.

Under the stable range assumption, the structure of the theta lift �(�) of a unitary

character � offG0 has been thoroughly investigated for various pairs (see, for example, [8],

[9], [15], [18] and [5]). In particular, �(�) is eK-multiplicity-free, and it often has embed-
dings into certain degenerate principal series representations. It also has relatively small
(and explicitly speci�ed) Gelfand-Kirillov dimension. It is likely that these representa-
tions should play an important role in the classi�cation theory of unitary representations
of classical groups over R.

In this paper, we �rst give a brief account of some of these properties of �(�) by
applying geometric considerations on certain nilpotent orbits (for the pair (G;G0) =
(U(n; n); U(p; q)); p + q � n). Our geometric approach has several advantages to the
other methods. One of the advantages is that we can determine the associated cycle
of �(�) almost immediately. Another advantage is that the method works equally well
for theta lifts of some irreducible admissible representations other than characters. As a
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typical example, we examine the theta lift of a holomorphic discrete series representation
with a scalar extreme fK 0-type.

Let �0
hol

be a holomorphic discrete series representation of fG0 = U(p; q)�. Although
�0
hol

itself is fairly well understood, it is not so for its theta lift �(�0
hol
). By the general

arguments of Adams [1, x5], most of �(�0
hol
) is realized as a derived functor module Aq(�),

and consequently, its associated variety can be explicitly described. Furthermore, the
Blattner type formula for multiplicity ofK-types of Aq(�) will then give the decomposition
of �(�0

hol
)
��
eK
. However, it is well-known that these general formulas are not very practical;

for example, the Blattner type formula for K-types gives the multiplicity as a summation
over certain Weyl group, and it is often diÆcult to extract precise value from it.

In contrast, our method gives �(�0
hol
)
��
eK
completely in terms of the branching coeÆ-

cients of �nite dimensional representations of general linear groups, called Littlewood-
Richardson coeÆcients, and there are known algorithms to calculate them e�ectively.
Moreover our method implies in a straightforward way that the associated cycle of �(�0

hol
)

is multiplicity free if �0
hol

has a scalar extreme fK 0-type.
We shall be more precise in the following.
Let g = gl2n(C ) be the complexi�ed Lie algebra of G = U(n; n). Take a maximal

compact subgroup K = U(n) � U(n) of G. Then it determines a (complexi�ed) Cartan
decomposition g = k � s. We denote by N (s) the cone of nilpotent elements in s. Then
the complexi�cation KC = GLn �GLn of K acts on N (s) with �nitely many orbits. We
use similar notations for G0 = U(p; q).

Assume that (G;G0) = (U(n; n); U(p; q)) is in the stable range with G0 the small
member, i.e., p + q � n, and take a nilpotent K 0

C
-orbit O0 � N (s0). Then we can de�ne

the theta lift O = �(O0) of O0 in terms of certain geometric quotient maps with respect
to the action of KC and K 0

C
(see x1). It turns out that the associated variety of �(�)

(� = detk for some k 2 Z ) is the theta lift of the trivial orbit f0g � N (s0), which we
denote by O1

p;q = �(f0g). Its Jordan type is 2p+q � 12(n�(p+q)).
We introduce some notations. Denote by �+

n the set of dominant integral weights for
U(n) or GLn:

�+
n = f� = (�1; : : : ; �n) 2 Z

n; �1 � � � � � �ng:

For � = (�1; : : : ; �n) 2 �+
n , �� denotes an irreducible �nite dimensional representation of

GLn with highest weight �, and �� = (��n; : : : ;��1) denotes the highest weight of the
contragradient representation � �� . We denote the set of all partitions of length k by Pk.
If k � n, then Pk may be considered as a subset of �+

n by adding n� k zeros in the tail.
Denote Ik = (1; : : : ; 1) 2 Pk. For � 2 Pp and � 2 Pq, we put

�� � = (�; 0; : : : ; 0; ��) 2 �+
n : (0.3)

Note that the regular function ring C [O1
p;q ] of the closure of O

1

p;q inherits naturally a
KC -action.

Theorem A The KC -type decomposition of C [O1
p;q ] and the eK-type decomposition of
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�(detk) are multiplicity-free and are described as follows:

C [O1
p;q ] '

X�

�2Pp;�2Pq

(����)
�
� ����; and

�(detk)
��
eK
'

8>>>><>>>>:

X�

�2Pp;�2Pq

�
�(�+kIp)�(�+kIq) 
 �p;q

�
�
�
�
���� 
 �p;q

�
; k � 0;

X�

�2Pp;�2Pq

�
���� 
 �p;q

�
�
�
�
�(��kIp)�(��kIq) 
 �p;q

�
; k < 0;

where �p;q = det
p�q

2 is a character of U(n)�. Furthermore, the associated cycle of �(detk)
is given by

AC �(detk) = [O1
p;q] (multiplicity-free):

As a corollary of the above theorem, we obtain

Dim �(detk) = dimO1

p;q = (p+ q)(2n� (p+ q)) and

Deg �(detk) = degO1
p;q;

where Dim� denotes the Gelfand-Kirillov dimension of � and Deg � is the Bernstein
degree [17].

Next, let us consider a holomorphic discrete series representation �0
hol

of G0 = U(p; q).
Let s0 = s0+�s0� be a direct sum decomposition of s0 by AdKC -invariant spaces. Then the
associated variety of �0

hol
is s0� = O0

hol
for an appropriate choice of the complex structure.

Here O0
hol

is the open dense K 0
C
-orbit in s0�. Put Ohol

p;q = �(O0
hol
), the theta lift of O0

hol
.

Then Ohol

p;q is a 3-step nilpotent orbit with Jordan type 3p � 2q�p � 12n�p�2q (for q � p).
For �; �; � 2 �+

n , de�ne the Littlewood-Richardson coeÆcient c �
�;� by the branching

rule:

�� 
 �� '
X�

�2�+
n

c �
�;� ��: (0.4)

For m; l 2 Z+, set (
a(m) = m+ n

2
; b(l) = l + n

2
; n even;

a(m) = m+ n�1
2
; b(l) = l + n+1

2
; n odd:

(0.5)

Theorem B Let �0
hol

be a holomorphic discrete series of U(p; q) with the following scalar

extreme K 0-type:

�(m; l) = deta(m)
� det�b(l); m; l 2 Z

+:
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Then the KC = GLn �GLn-module structure of C [Ohol

p;q ] and the eK-type decomposition of

�(�0
hol
) are described as follows:

C [Ohol

p;q ] '
X�

�;
2Pp
�;Æ2Pq

c
�Æ�;�� (����)
�
� �
�Æ; and

�(�0
hol
)
��
eK
'
X�

�;
2Pp
�;Æ2Pq

c
�Æ�;��
�
�(�+a(m)Ip)�(�+b(l)Iq) 
 �p;q

�
�
�
�
�
�Æ 
 �p;q

�
:

Furthermore, the associated cycle of �(�0
hol
) is given by

AC �(�0
hol
) = [Ohol

p;q] (multiplicity-free):

As a consequence, we conclude that

Dim �(�0
hol
) = dimOhol

p;q = (p+ q)(2n� (p+ q)) + pq; and

Deg �(�0
hol
) = degOhol

p;q:

The above results are also valid for the following reductive dual pairs in the stable
range

(G;G0) =

8<:
(O(p; q); Sp(2n;R)) 2n < min(p; q);
(U(p; q); U(r; s))) r + s � min(p; q);
(Sp(p; q); O�(2n)) n � min(p; q)

with appropriate modi�cations. We shall leave this to the interested reader.
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1 Moment maps

Unless otherwise stated, we always consider a reductive dual pair

(G;G0) = (U(n; n); U(p; q))

in the stable range, where G0 is the smaller member, i.e., we assume that p + q � n
throughout in this paper except for xx4.1 and 4.2.
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Let g = Lie(G)C be the complexi�ed Lie algebra of G and �x a maximal compact
subgroup K = U(n)� U(n) in G. It naturally determines a complexi�ed Cartan decom-
position g = k� s, which is realized explicitly as

g = k� s =

�
gln 0
0 gln

�
�

�
0 Mn

Mn 0

�
;

where Mn = Mn(C ) denotes the space of all n � n matrices over C . Therefore we can
identify s =Mn �M�

n = s+ � s�: Here, M
�
n denote the dual of Mn via the trace form (or

Killing form). The complexi�cation KC = GLn � GLn of K acts on s by the restriction
of the adjoint action, and the above notation is also compatible with the action of KC ,
i.e., s� are both stable under KC , and s� = M�

n is the contragredient representation of
s+ =Mn.

Similarly, we choose a maximal compact subgroup K 0 = U(p) � U(q) � G0, and a
complexi�ed Cartan decomposition g0 = k0 � s0. We identify s0 = s0+ � s0� = Mp;q �
Mq;p, where Mp;q = Mp;q(C ) denotes the space of all p � q matrices, and we make the
identi�cation M�

p;q =Mq;p similarly.
We de�ne two moment maps ' and  as follows. Put W =Mp+q;2n and take

X =

�
x z
y w

�
2 W (x; z 2Mp;n; y; w 2Mq;n): (1.1)

Then they are de�ned as

' : W ! s; '(X) = ( txz; t( tyw)) = (a; b) 2Mn �Mn;

 : W ! s0;  (X) = (x ty; t(z tw)) = (c; d) 2Mp;q �Mq;p:

We de�ne an action of KC �K 0
C
on W in such a way that it makes ' and  KC �K 0

C
-

equivariant maps. Note thatKC -action on s is given by the adjoint action, whileK 0
C
-action

on s is trivial. Similar remarks are applicable to the action of KC �K 0
C
on s0.

Let '� and  � be the induced algebra homomorphisms of regular function rings. Thus
for example, we have the algebra homomorphism '� : C [s] ! C [W ], and in terms of
matrix entry coordinates, it is given by

'�(aij)(X) = ( txz)ij =

pX
k=1

xkizkj; '�(bij)(X) = t( tyw)ij =

qX
l=1

wljyli;

where aij 2 C [s+ ] is the linear functional on s+ taking a = (aij)n�n 2 s+ to the (i; j)-th
entry, and similarly for bij 2 C [s� ]. Classical invariant theory then tells us that

Image'� = C [W ]K
0

C and Image � = C [W ]KC :

This means that both ' and  are geometric quotient maps from W onto their images.
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For a subset S in g, we denote by N (S) the subset of nilpotent elements in S. It is
known that KC acts on N (s) with �nitely many orbits, and that the KC -orbits in N (s)
correspond bijectively to G-orbits in N (gR) (Kostant-Sekiguchi correspondence), where
gR denotes the Lie algebra of G (over R). It is easy to see that the moment maps preserve
nilpotent elements. Namely we have

'( �1(N (s0))) � N (s) and  ('�1(N (s))) � N (s0):

The following result should be well-known to the experts, and can be proved by explicit
matrix calculations, which we shall omit. Recently we have learned more general and
sophisticated versions from Takuya Ohta.

Theorem 1.1 Assume that p+q � n. Take a K 0
C
-orbit O0 � N (s0). Then � =  �1(O0) is

the closure of a single KC �K 0
C
-orbit in W . As a consequence, the variety � is irreducible,

hence '( �1(O0)) is the closure of a single KC -orbit O 2 N (s).

Remark 1.2 Note that, if the nilpotent elements in O0 are k-step nilpotent, then those
in O are (k + 1)-step nilpotent.

De�nition 1.3 We call the KC -orbit O which is open dense in the image '( �1(O0)) the
theta lift of O0.

Proposition 1.4 Let O be the theta lift of K 0
C
-orbit O0 � N (s0). Then the closure O is

a geometric quotient of � =  �1(O0) by K 0
C
, i.e., O ' �==K 0

C
. In particular, we have

C [O ] ' C [�]K
0

C .

Proof. Since ' : W ! '(W ) is a geometric quotient map, and � is a K 0
C
-stable

closed subvariety of W , the proposition follows from the general arguments on geometric
quotients. See [12] and [13] for details. Q.E.D.

2 Null cone

Let W = W+ �W� be a decomposition of W , where

W+ =

��
x
y

�
2Mp+q;n

�
and W� =

��
z
w

�
2Mp+q;n

�
in the notation of (1.1). Let

 + : W+ =Mp+q;n 3

�
x
y

�
7! x ty 2Mp;q = s0+

be the restriction of  to the \holomorphic" half of W . We put

Np;q =  �1+ (0) =  �1(0) \W+

and call it the null cone. Note thatK 0
C
= GLp�GLq andGLn, which is the left component

of KC = GLn �GLn, act simultaneously on W+.
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Theorem 2.1 (Kostant) Assume that p+ q � n. The null cone Np;q is irreducible, and

the de�ning ideal I(Np;q) is generated by GLn-invariants of positive degree. Moreover, the

regular function ring of Np;q is naturally isomorphic to Hp;q, the space of GLn-harmonic

polynomials of W+. We have

C [W+ ] ' C [Np;q ]
 C [W+ ]
GLn ' Hp;q 
 C [s0+]

as GLn �K 0
C
-modules.

The above theorem tells us that the action of GLn on W+ is completely determined by
its action on the null cone Np;q. Thus we are interested in the GLn�K

0
C
-module structure

of C [Np;q ] ' Hp;q. This is described below by the well-known result of Kashiwara and
Vergne [6]. See also [3].

We recall some notations from the Introduction. To make it more transparent, we
denote the irreducible �nite dimensional representation ofGLn with highest weight � 2 �+

n

by �
(n)
� . Also for � 2 Pp and � 2 Pq, we put ��n � = (�; 0; : : : ; 0; ��) 2 �+

n .

Theorem 2.2 (Kashiwara-Vergne, Howe) Assume that p+q � n. As a GLn�K 0
C
=

GLn � (GLp �GLq)-module, we have

C [Np;q ] ' Hp;q '
X�

�2Pp
�2Pq

�
(n)
���

�
� (�

(p)
�

�
� � (q)� ):

Remark 2.3 The above isomorphism is a graded isomorphism if we assign the grading
on the homogeneous component �

(n)
���

�
� (�

(p)
�

�
� �

(q)
� ) by j�j + j�j, where j�j =

P
i �i

(resp., j�j =
P

j �j) is the size of � (resp., �). Similar remarks apply to isomorphisms in
Theorem 3.2 and Theorem 3.5.

3 Theta lift of orbits

3.1 Theta lift of the trivial orbit

First, we consider the simplest case, where the orbit O0 is trivial. We write � = �1

p;q =
 �1(f0g). Then we clearly have

� = �1

p;q = Np;q �Nq;p � W+ �W�;

where the null cone Nq;p is de�ned similarly as Np;q. Since Np;q ' Nq;p as varieties, and
the action of GLn � K 0

C
on Nq;p is dual to that on Np;q, we sometimes denote Nq;p by

N�
p;q. In particular, we have C [Nq;p ] ' C [Np;q ]

� as a representation of GLn �K 0
C
.

We denote the theta lift of the trivial orbit O0 = f0g by O1

p;q. The closure O1
p;q is

the geometric quotient of the product of null cones by the action of K 0
C
. It is a two-step

nilpotent orbit with Jordan normal form represented by the partition 2p+q � 12n�2(p+q).
We include the following simple proposition for its intrinsic interest (see [12] and [13]).
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Proposition 3.1 Let O1

p;q (p + q � n) be the theta lift of the trivial K 0
C
-orbit in N (s0).

Then

(1) every two-step nilpotent KC -orbit in N (s) for G = U(n; n) is of the form O1

p;q for

some p + q � n. Two orbits O1

p1;q1 and O
1

p2;q2 generate the same GC -orbits if and only if

p1 + q1 = p2 + q2.

(2) The dimension and the closure of the orbit O1

p;q are given by

dimO1

p;q = (p+ q)(2n� (p+ q)); O1
p;q =

a
r�p;s�q

O1

r;s:

(3) The variety O1
p;q is normal. If p+ q < n holds, then we have C [O1

p;q ] = C [O1

p;q ].

The regular function ring C [O1
p;q ] has a beautiful KC structure, which is described

by the following theorem. It can be thought of as a generalization of the well-known
decomposition of C [Mn;n ] as a GLn � GLn-module. We shall use this to determine the
associated cycle of the theta lift of a unitary character of G0 to G.

Denote

�+
n (p; q) = f��n � j � 2 Pp; � 2 Pqg: (3.1)

Theorem 3.2 Assume that p+ q � n, and let O1

p;q � N (s) be the theta lift of the trivial

nilpotent K 0
C
-orbit in N (s0). Then we have

C [O1
p;q ] '

X�

�2�+
n (p;q)

��
�
� ��;

as a KC = GLn �GLn-module.

Proof. The proof is similar to that of Theorem 3.5 below. See the remark after the
proof of Theorem 3.5. Q.E.D.

Remark 3.3 If p + q = n, one can show that C [O1

p;q ] '
P�

�2�+
n
��
�
� ��: Therefore,

C [O1

p;q ] is strictly larger than C [O1
p;q ] for p+ q = n.

3.2 Theta lift of the dense holomorphic orbit

Note that s0� � N (s0). Since s0� is irreducible and K 0
C
-stable, it has the dense open

K 0
C
-orbit O0

hol
, which consists of the matrices in Mq;p = s0� of the maximal possible rank

min(p; q).
Let Ohol

p;q � N (s) be the theta lift of O0
hol
. Since s0� = O0

hol
, we have Ohol

p;q = '( �1(s0�))
by de�nition. The elements inOhol

p;q are three-step nilpotent, and their Jordan normal forms
are represented by the partition 3p � 2q�p � 12n�p�2q for q � p.

We refer the following proposition again to [12] and [13].
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Proposition 3.4 Let Ohol

p;q be the theta lift of the open dense K 0
C
-orbit in s0�. Then

(1) the closure Ohol

p;q (p + q � n) is a normal variety. The dimension of the orbit is

dimOhol

p;q = (p+ q)(2n� (p+ q)) + pq:

(2) Ohol

p1;q1 and O
hol

p2;q2 generate the same complex GC -orbit in N (g) if and only if (p2; q2) =
(p1; q1) or (q1; p1).

Theorem 3.5 As a KC = GLn �GLn-module, we have

C [Ohol

p;q ] '
X�

�;
2Pp
�;Æ2Pq

c
�Æ�;�� (����)
�
� �
�Æ;

where c �
�;� denotes the Littlewood-Richardson coeÆcient de�ned in (0.4).

Proof. We put �p;q =  �1(s0�) � W . Then, clearly we have �p;q = Np;q �W�. Since
Ohol

p;q is the geometric quotient of �p;q by K
0
C
, we see

C [Ohol

p;q ] ' C [�p;q ]
K0

C '
�
C [Np;q ]
 C [W� ]

�K0

C

:

Since W� =M�
p;n �Mq;n, we get (as a GLn �K 0

C
-module)

C [W� ] ' C [M �
p;n ]
 C [Mq;n ] '

X�

�2Pp
�2Pq

(�
(p)
� � �

(n)
� )
 (� (q)�

�
� � (n)�

�)

'
X�

�2Pp
�2Pq

(�
(p)
� � � (q)�

�)�
X�

�2�+
n

c �
�;�� �

(n)
� '

X�

�;�;�

c �
�;�� �

(n)
� � (�

(p)
� � � (q)�

�):

In the last summation, note that it is suÆcient to consider � = 
 � Æ (
 2 Pp; Æ 2
Pq), because otherwise the Littlewood-Richardson coeÆcient c �

�;�� vanishes. The module
structure of C [Np;q ] is given in Theorem 2.2, namely,

C [Np;q ] '
X�

�2Pp
�2Pq

(�
(n)
���)

�
� (� (p)�

�
� �

(q)
� ):

Taking K 0
C
= GLp � GLq-invariants in the tensor product of these two spaces, we

obtain

C [�p;q ]
K0

C '
X�

�;�;�

c �
�;�� (�

(n)
���)

�
� � (n)� ;

where � = 
 � Æ as mentioned above. Q.E.D.

Remark 3.6 We comment on the proof of Theorem 3.2. Recall that O1
p;q = '(�1

p;q),
where �1

p;q = Np;q �Nq;p. Thus we get

C [O1
p;q ] = C [�1

p;q ]
K0

C ' (C [Np;q ]
 C [Np;q ]
�)K

0

C :

The rest of the proof remains the same as above.
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4 Theta lifting associated to the dual pair (U(n; n); U(p; q))

4.1 Howe's maximal quotient

Let (G;G0) � G = Sp(2N;R) be a reductive dual pair, and 
 be a �xed oscillator

representation of eG , the metaplectic cover of G . Often when no confusion should arise,
we shall not distinguish 
 with its Harish-Chandra module.

Denote by Irr(g0;fK 0) the in�nitesimal equivalent classes of irreducible admissible

(g0;fK 0)-modules, and R(g0;fK 0; 
) the subset of those in Irr(g0;fK 0) which can be realized as

quotients by (g0;fK 0)-invariant subspaces of 
. According to [4], for each �0 2 R(g0;fK 0; 
)

there exists a quasi-simple admissible (g; eK)-module 
(�0) of �nite length satisfying


=I(�0) ' 
(�0)
 �0;

where
I(�0) = \�2Hom 0 Ker (�); Hom 0 = Hom (g0;fK0)(
; �

0):

Furthermore 
(�0) has a unique irreducible quotient, denoted by �(�0). 
(�0) is called
Howe's maximal quotient of �0, and �(�0) the theta lift of �0.

Note that any � 2 Hom (g0;fK0)(
; �
0) factors through a map e� : 
=I(�0) 7! �0 and

will therefore de�ne an element in the algebraic dual of 
(�0). This association is (g; eK)-

equivariant, and so we have (by taking eK-�nite vectors)

Lemma 4.1 We have the isomorphism


(�0)� ' Hom (g0;fK0)(
; �
0)
eK-�nite;

where 
(�0)� is the dual in the category of Harish-Chandra modules.

We specialize to the case (G;G0) = (U(n; n); U(p; q)) � Sp(4n(p + q);R). We shall
need to use the following

Proposition 4.2 Let (G;G0) = (U(n; n); U(p; q)). Suppose �0 is the (g0;fK 0)-module

of

(1) a unitary character and p + q � n; or

(2) a discrete series representation of U(p; q) and p+ q � 2n,

then the maximal quotient 
(�0) is irreducible. Hence we have �(�0) = 
(�0).

Proof. (1) is a special case of Proposition 2.1 of [18]. (2) follows from (the proof of)
Proposition 2.4 of [11], where it is shown that �(�0)
�0 occurs as an irreducible summand
of 
j

eG�fG0
. Q.E.D.

11



We consider the see-saw pair ([7, 2]) :

G = U(n; n) U(p; q)� U(p; q) = L0

[ � [ diagonal
K = U(n)� U(n) U(p; q) = G0

By the functoriality of the oscillator representation, we have


 ' ! 
 !�

as eK � eL0-modules, where ! is an oscillator representation associated to the dual pair:

(U(n); U(p; q)) � Sp(2(p+ q)n;R);

and the �rst factor U(n) of K acts on the �rst factor of ! 
 !� via !, while the second
factor U(n) of K acts on the second factor of ! 
 !� via the dual of !.

Recall that associated to the dual pair (U(n); U(p; q)), the covering U(n)� ! U(n)
splits if and only if p + q is even. When p + q is odd, U(n)� can be identi�ed with the
half determinant cover, namely

U(n)� = f(u; c) 2 U(n)� C
� jc2 = det(u)g:

Let det
1

2 be the character of U(n)� de�ned by U(n)� 3 (u; c) 7! c. Similar notations
apply to the characters of U(p; q)�.

Let

�+
n (p; q) = f� = ��n � 2 �+

n j� 2 Pk; � 2 Pl; k � p; l � q; k + l � ng:

Note that this de�nition coincides with our previous notation of �+
n (p; q) for p + q � n

(see (3.1)).
The decomposition of an oscillator representation for a pair of compact type is well-

known [6, 4]. For the pair (U(n); U(p; q)), we have

! '
X�

�2�+
n (p;q)

(�
(n)
� 
 �p;q)� L(�

(n)
� ) (as a U(n)� � U(p; q)�-module); (4.1)

where �p;q = det
p�q

2 . The irreducible representation L(�
(n)
� ) is a unitary highest weight

module of U(p; q)� with minimalfK 0-type (�
(p)
� 
det

n

2 )�(�
(q)
� 
det

n

2 )�. Thus as eK�(g0;fK 0)-
modules, we have


 ' ! 
 !� '

0@ X�

�2�+
n (p;q)

(�
(n)
� 
 �p;q)� L(�

(n)
� )

1A


0@ X�

�2�+
n (p;q)

(� (n)� 
 �p;q)
�
� L(� (n)� )�

1A

'
X�

�;�2�+
n (p;q)

�
(�

(n)
� 
 �p;q)� (� (n)� 
 �p;q)

�
�
�

�
L(�

(n)
� )
 L(� (n)� )�

�
:

In view of the isomorphism 
(�0)� ' Hom (g0;fK0)(
; �
0)
eK-�nite, we have the following

12



Proposition 4.3 Let �0 2 R(g0;fK 0; 
). Then


(�0)�
��
eK
'X�

�;�2�+
n (p;q)

dimHom (g0;fK0)(L(�
(n)
� )
 L(� (n)� )�; �0)

�
(�

(n)
� 
 �p;q)� (� (n)� 
 �p;q)

�
�
;

or equivalently


(�0)
��
eK
'X�

�;�2�+
n (p;q)

dimHom
(g0;fK0)

(L(�
(n)
� )
 L(� (n)� )�; �0)

�
(�

(n)
� 
 �p;q)

�
� (� (n)� 
 �p;q)

�
:

4.2 Explicit eK-type formulas
We �rst discuss some generalities on (g; K)-modules, where g is the complexi�cation of
the Lie algebra of a semisimple Lie group G and K is a maximal compact subgroup of G.

Let H be a (g; K)-module which is K-admissible, i.e., dimHomK(H; �) <1 for any
� 2 Irr(K). We also assume that H is locally K-�nite, which means that H = HK

where HK denotes the space of K-�nite vectors in H. Then, H� = Hom C (H; C )K is also
K-admissible and we have a canonical isomorphism H ' (H�)�. Note that H� does not
denote the algebraic dual of H. A straightforward argument gives

Lemma 4.4 Let H1 be a (g; K)-module which is locally K-�nite. Then, for any K-

admissible (g; K)-module H2 which is locally K-�nite, we have

Hom (g;K)(H1 
H�
2 ; 1) ' Hom (g;K)(H1; H2):

By applying Lemma 4.4 twice, we obtain

Corollary 4.5 Let H1 be a (g; K)-module which is locally K-�nite. Assume that H2 and

� are K-admissible (g; K)-modules which are locally K-�nite, and H�
2 
 �� ' (H2 
 �)�.

Then we have

Hom (g;K)(H1 
H�
2 ; �) ' Hom (g;K)(H1; H2 
 �):

We note that the hypothesis of the above corollary is satis�ed if � is a �nite dimensional
(g; K)-module, or if both H2 and � are unitary highest weight modules.

Combining Proposition 4.2, Proposition 4.3 and Lemma 4.4, we obtain the K-type
formula of �(detk) in Theorem A of the Introduction.

Theorem 4.6 (Lee-Zhu) We have


(detk)
��
eK
'

8>>><>>>:
P�

�2�+
n (p;q)

�
�� 
 �p;q

�
�
�
�
�� 
 �p;q

�
; k = 0;P�

�2�+
n (p;q)

�
�(�+kIp�kIq) 
 �p;q

�
�
�
�
�� 
 �p;q

�
; p+ q � n; k > 0;P�

�2�+
n (p;q)

�
�� 
 �p;q

�
�
�
�
�(�+jkjIp�jkjIq) 
 �p;q

�
; p+ q � n; k < 0:
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In particular, this gives the eK-type decomposition of the theta-lift �(detk), for p+ q � n.

For � 2 �+
2n and �; � 2 �+

n , de�ne branching coeÆcients b
�
�;� by

� (2n)�

��
GLn�GLn

'
X�

�;�2�+
n

b��;��
(n)
� � � (n)� : (4.2)

The following proposition is a special case of Howe's reciprocity theorem [2]. We give an
argument for the sake of completeness. Similar arguments will be omitted later.

Proposition 4.7 For �, � 2 �+
n (p; q), we have

L(� (n)� )
 L(� (n)� ) '
X�

�2�+
2n

(p;q)

b��;�L(�
(2n)
� ):

Proof. For the moment, we let (G;G0) = (U(2n); U(p; q)) � Sp(4n(p+ q);R), and let
� be an associated oscillator representation. We have the see-saw pair:

G = U(2n) U(p; q)� U(p; q) = L0

[ � [ diagonal
K = U(n)� U(n) U(p; q) = G0

Functoriality of the oscillator representation implies that

� ' ! 
 !

as eK � eL0-modules, where as before ! is an oscillator representation associated to the
dual pair:

(U(n); U(p; q)) � Sp(2(p+ q)n;R):

Thus we have

� '

0@ X�

�2�+
n (p;q)

(� (n)� 
 �p;q)� L(� (n)� )

1A


0@ X�

�2�+
n (p;q)

(� (n)� 
 �p;q)� L(� (n)� )

1A

'
X�

�;�

�
(� (n)� 
 �p;q)� (� (n)� 
 �p;q)

�
�
�
L(� (n)� )
 L(� (n)� )

�
: (4.3)

On the other hand, we have (as eG�fG0-modules)

� '
X�

�2�+
2n

(p;q)

(� (2n)� 
 �p;q)� L(� (2n)� ):
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From the de�nition of the branching coeÆcient (4.2), we have

� '
X�

�;�

�
(� (n)� 
 �p;q)� (� (n)� 
 �p;q)

�
�

0@ X�

�2�+
2n

(p;q)

b��;�L(�
(2n)
� )

1A : (4.4)

Comparing (4.3) and (4.4), we get the desired formula. Q.E.D.

From now on, we assume that the pair (G;G0) is in the stable range with G0 the

small member, namely p + q � n. Then L(�
(n)
� ) is a holomorphic discrete series for each

� 2 �+
n (p; q).

Let �0 be the following character of U(p; q)
�:

�0 =

(
1; n even,

det�
1

2 ; n odd,

and for � 2 �+
n (p; q), let

eL(� (n)� ) = �0 
 L(� (n)� ): (4.5)

Thus eL(� (n)� ) de�nes a true representation of U(p; q).
Recall also that associated to the dual pair (U(n; n); U(p; q)), the covering U(p; q)� !

U(p; q) splits. Note that since we are assuming that the pair is in the stable range, any
unitary representation of U(p; q) is in the domain of theta correspondence. See [10].

For � = ��n � 2 �+
n (p; q), denote

e� = ��2n � 2 �+
2n(p; q) (4.6)

by inserting n extra zeroes. We note that each � 2 �+
2n(p; q) is of the form e� for some

� 2 �+
n (p; q).

Theorem 4.8 Consider the dual pair (G;G0) = (U(n; n); U(p; q)) (p + q � n) in the

stable range. Let eL(� (n)� ) be a holomorphic discrete series of U(p; q), where � 2 �+
n (p; q).

Then its maximal quotient 
(eL(� (n)� )) is irreducible and gives the theta-lift �(eL(� (n)� )) 2

Irr(U(n; n)�). We have eK-type decompositions

�(eL(� (n)� ))
��
eK
'

X�

�;�2�+
n (p;q)

b
e�
�;�(�

(n)
(�+n

2
Ip�n

n

2
Iq)

 �p;q)

�
� (� (n)� 
 �p;q); n even,

and

�(eL(� (n)� ))
��
eK
'

X�

�;�2�+
n (p;q)

b
e�
�;�(�

(n)

(�+n�1

2
Ip�n

n+1

2
Iq)

 �p;q)

�
� (� (n)� 
 �p;q); n odd,

where the branching coeÆcient b��;� is de�ned in (4.2).
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Proof. If n is even, then by Corollary 4.5 and Proposition 4.7, we have

Hom (g0;fK0)(L(�
(n)
� )
 L(� (n)� )�; L(� (n)� )) '

X�

�2�+
2n

(p;q)

b��;� Hom (g0;fK0)(L(�
(n)
� ); L(� (2n)� )):

If � = e� for � 2 �+
n (p; q), then we have

L(�
(2n)
e�

) ' L(�
(n)
(�+n

2
Ip�n

n

2
Iq)
);

by comparing the minimal fK 0-types. Note that when n is odd, we have

L(�
(2n)
e�

) ' det1=2 
 L(�
(n)

(�+n�1

2
Ip�n

n+1

2
Iq)
):

Thus

dimHom
(g0;fK0)

(L(� (n)� )
 L(� (n)� )�; L(� (n)� )) = b
e�
�;�;

where � = � + n
2
Ip�n

n
2
Iq and � 2 �+

n (p; q).
In view of Proposition 4.2 and Proposition 4.3, the desired result follows. The case of

odd n is similar. Q.E.D.

4.3 Theta lifting and associated cycles

For the moment, let G be a non-compact semi-simple Lie group of Hermitian type and
K a maximal compact group. Let g = k� s be a complexi�ed Cartan decomposition and
further let s = s+ � s� be the AdK-stable decomposition of s. An irreducible unitary
representation � of G is said to be holomorphic if there are non-zero K-�nite vectors v
in the space of � such that �(s�)(v) = 0. Then the space of such vectors v is irreducible
under K. This is the (unique) minimal K-type of �, and it determines the representation
� completely. We denote an irreducible holomorphic unitary representation with the
minimal K-type � 2 Irr(K) by �(�).

We give a result on tensor product of a holomorphic unitary representation and a
holomorphic discrete series representation with a scalar minimal K-type.

Proposition 4.9 Let � be a holomorphic unitary representation of G, and �(�) be the

holomorphic discrete series representation of G with the one-dimensional minimal K-type

�. Suppose that � has the following K-type decomposition:

�
��
K
'

X
�2Irr(K)

m(�)�;

where m(�) is the multiplicity of � . Then

� 
 �(�) '
X

�2Irr(K)

m(�)�(� 
 �): (4.7)
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Proof. Since �(�) is a holomorphic discrete series with the scalar minimal K-type
�, we see that for any K-type � of �, �(� 
 �) is also a holomorphic discrete series
representation. Thus we have

�(�)
��
K
' �
 S[s+];

and

�(� 
 �)
��
K0
' (� 
 �)
 S[s+];

where S[s+] is the symmetric algebra over s+.
Therefore the left and right hand side of (4.7) are isomorphic as K-modules.
On the other hand, it is clear that �
�(�) is the direct sum of irreducible holomorphic

unitary representations (cf. Proposition 4.7 for the case which concerns us), and each K-
type occurs with �nite multiplicity. General theory for holomorphic representations tells
us that their G-module decompositions (in the Grothendieck group) are determined by the
weight space decompositions with respect to the compact Cartan subgroup T � K. We
thus conclude that the isomorphism of the left and right hand side of (4.7) as K-modules
in fact induces an isomorphism as G-modules. This proves the proposition. Q.E.D.

We are now back to the dual pair (G;G0) = (U(n; n); U(p; q)) (p+ q � n) in the stable
range. For m; l 2 Z

+, denote

�(m; l) = mIp�n lIq 2 �+
n (p; q):

Then eL(� (n)�(m;l)) is a holomorphic discrete series of U(p; q) with the scalar minimalK 0-type

�(m; l) =

8<: (det
n

2 � det�
n

2 )
 (detm � det�l); n even,

(det
n�1

2 � det�
n+1

2 )
 (detm � det�l); n odd.

Proposition 4.10 For � 2 �+
n (p; q), we have

L(� (n)� )
 L(�
(n)
�(m;l)) '

X�

�2Pp;�2Pq

c��;��L(�
(2n)
(�+mIp)�2n(�+lIq)

):

Proof. We consider the see-saw pair:

U(n) U(p)� U(q) = K 0

\ � \
U(n)� U(n) U(p; q) = G0
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Howe's reciprocity theorem [2] implies that

L(� (n)� )
��
K0
' (det�

n

2 � det
n

2 )

� X�

�2Pp;�2Pq

c��;���
(p)
� � (�

(q)
� )�

�
:

Proposition 4.9 then implies the result. Q.E.D.

By Proposition 4.7 and Proposition 4.10, we have the following

Corollary 4.11 For � 2 �+
n (p; q), and � 2 Pp; � 2 Pq, we have

c��;�� = b
(�+mIp)�2n(�+lIq)

�;�(m;l) ; m; l 2 Z
+:

Theorem 4.8 and Corollary 4.11 now imply the eK-type formula of �(�0
hol
) in Theorem

B of the Introduction.

We recall the notion of associated variety and associated cycle for a Harish-Chandra
module V , which are denoted by AV (V ) and AC (V ) (see for example [14]). By a general
result of [16], we have

Lemma 4.12 The associated varieties of the theta lifts �(detk) and �(eL(� (n)�(m;l))) are given
as

AV (�(detk)) = O1
p;q; and AV (�(eL(� (n)�(m;l)))) = Ohol

p;q:

Remark 4.13 The associated variety of the theta lift of any holomorphic discrete series
of U(p; q) is the same, namely Ohol

p;q. The same remark is valid for the theta lift of any irre-
ducible �nite dimensional unitary representation of U(p; q). Of course such an irreducible
�nite dimensional unitary representation is a unitary character of U(p; q) unless pq = 0.

The main result of this section is the statement on associated cycles of �(detk) and

�(eL(� (n)�(m;l))) in Theorems A and B of the Introduction.

Theorem 4.14 Consider the dual pair (G;G0) = (U(n; n); U(p; q)) (p + q � n) in the

stable range. Then we have

AC (�(detk)) = [O1
p;q]; and AC (�(eL(� (n)�(m;l)))) = [Ohol

p;q]; k 2 Z; m; l 2 Z
+:

Proof. We compare the eK-module structure of �(detk) (resp., �(eL(� (n)�(m;l)))) with the

KC -module structure of C [O1
p;q ] (resp., C [O

hol

p;q ]).

For detk, the eK-module structure of �(detk) coincides with the KC -module structure of
C [O1

p;q ] up to the obvious determinant shift, and the shift in the parameter � = ��n � !
(� + kIp)�n (� + kIq). See Theorem 4.6 and Theorem 3.2.
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For eL(� (n)�(m;l)), since c
�
�;�� = b

(�+mIp)�2n(�+lIq)

�;�(m;l) for � 2 �+
n (p; q), and � 2 Pp; � 2 Pq, we

see that the eK-module structure of �(eL(� (n)�(m;l))) coincides with the KC -module structure

of C [Ohol

p;q ] up to the obvious determinant shift and the shift in the parameter � �n � !
(� + a(m)Ip)�n (� + b(l)Iq). Here a(m) and b(l) are given in (0.5). See Theorem 4.8 and
Theorem 3.5.

Thus in either case, the two Hilbert polynomials (associated to KC -stable �ltrations)
have the same degrees and the same leading terms. In particular we have

Deg (�(detk)) = deg(O1
p;q); and Deg (�(eL(� (n)�(m;l)))) = deg(Ohol

p;q):

Our assertion follows from the equality of these degrees. See [14, Th. 1.4]. Q.E.D.
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