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Introduction

In [10], Ochiai, Taniguchi and one of the authors calculate the associated cycles and Bernstein
degrees for certain singular unitary representations. Their method uses the theory of dual
pairs (or theta correspondence), though it is only applicable to pairs of compact type (i.e.,
one member of the pair is a compact group). In this note, we consider representations arising
from a dual pair of non-compact type, and our purpose is to establish a generalization of the
results in [10].

One problem we encounter here is that the theta correspondence for a non-compact pair is
not completely understood, in spite of the pioneer work of Howe, and subsequently excellent
works of many people such as Adams, Li, Moeglin, Przebinda. Another problem here is
the lack of information on the unitary representations of non-compact groups which we try
to lift. In the case of compact Lie groups, unitary representations are well-understood and
we can do many computations in full details thanks to Cartan-Weyl theory and Frobenius
reciprocity. For non-compact groups, such information on unitary representations are not
readily available, let alone their classi�cations.

Therefore, in this note, we shall restrict ourselves to theta lifts of well-known unitary
representations such as the trivial representation and holomorphic discrete series represen-
tations. To present the ideas clearly, we shall also �x our dual pair as

U(p; q)� U(n; n) (p+ q � n):

The condition p+q � n ensures that the pair is in the stable range with U(p; q) as the smaller
member. We take an irreducible unitary representation of the smaller group U(p; q) (to be
more precise, the metaplectic covering group of U(p; q)), and investigate its theta lift. In the
cases we consider, it turns out that the associated variety of the theta lift corresponds to that
of the original representation through a \complex moment map", as expected. Moreover, the
associated cycles seem to behave well under this correspondence. These examples strongly
suggest that the conjectured formula of associated cycles in [10] is true in general.

The �rst author would like to thank the National University of Singapore for the kind
and warm hospitality during his stay in July 1999, where the �rst draft of this note was
written. We also thank Jian-Shu Li for valuable conversations in NUS.

1 Some small nilpotent orbits in U(n; n)

Let G = U(n; n) � K = U(n)� U(n), with GC = GL2n and KC = GLn � GLn. We denote
by g and k the complexi�ed Lie algebras of G and K respectively. Let g = k� s be a Cartan
decomposition, and s = s+ � s� be the KC -stable decomposition of s.

We begin with some elementary linear algebra. Write a typical element of s as

X =

�
0 A
B 0

�
2 s;

where A 2 s+ =Mn(C ), B 2 s� =Mn(C ).
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Since

X2 =

�
AB

BA

�
;

we see that X is nilpotent if and only if AB and BA are both nilpotent. In fact, this is
equivalent to say that AB or BA is nilpotent.

Note that for (g; h) 2 KC = GLn �GLn, we have

Ad (diag (g; h))

�
0 A
B 0

�
=

�
0 gAh�1

hBg�1 0

�
put
=

�
0 A0

B0 0

�
:

Thus the KC -orbit through X, denoted by OX , has invariants rankA and rankB. Further
we have �

A0B0 = gABg�1;
B0A0 = hBAh�1:

Therefore AB and BA naturally de�ne GLn-conjugacy classes in Mn(C ).
Let Xnull be the cone consisting of those nilpotent elements X in s such that X2 = 0,

namely

Xnull =

�
X =

�
0 A
B 0

�
2 s j AB = 0; BA = 0

�
:

Put

xp;q =

2664
1p

0
0

1q

3775 2 Xnull (p+ q � n): (1.1)

Denote by Op;q = KC � xp;q the adjoint KC -orbit through xp;q.

Lemma 1.1 (1) We have

Op;q � Xnull;

where Op;q denotes the closure of the orbit Op;q. Moreover, we have the decomposition

Xnull =
a

p+q�n

Op;q:

(2) Op;q and Or;s generate the same GC -orbit if and only if p+ q = r+s. Moreover, we have

dimOp;q = (p + q)(2n� (p+ q)); Op;q =
a

p0�p; q0�q

Op0;q0:
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Proof. (1) It is clear that Op;q � Xnull and Xnull is closed. Hence we have Op;q � Xnull.
Now take an arbitrary element of Xnull. By replacing it by a KC -conjugate, we can assume
that the element is of the form�

0 A
B 0

�
2 Xnull; A =

�
1p

0

�
:

By the assumption that AB = 0; BA = 0, we must have

B =

�
0

B0

�
:

Since elements of the form

(g; h) =

��
1p 0
0 �

�
;

�
1p 0
0 �

��
2 KC

�x A, we can conjugate B by some (g; h) to obtain B0 = diag (0; 1q).
(2) It is obvious that the Jordan form of xp;q depends only on p + q. This implies that

Op;q and Or;s generate the same GC = GL2n-orbit if and only if p+ q = r + s. To calculate
the dimension of Op;q, we consider the �xed subgroup of xp;q in KC , denoted by Kp;q. We
have

Kp;q = f(g; h) 2 KC j g and h are of the following formg; (1.2)

g =

24 a � �
0 � �
0 0 c

35 ; h =

24 a 0 0
� � 0
� � c

35 ; a 2 GLp; c 2 GLq:

The dimension formula then follows. Finally we observe that an orbit in Xnull is determined
by rankA and rankB (see the proof of (1)), we therefore conclude that the closure Op;q

contains all the low rank matrices. Q.E.D.

Proposition 1.2 Assume that p+ q < n.

(1) The variety Op;q is normal.

(2) The ring of regular functions on Op;q and Op;q coincide:

C [Op;q ] = C [Op;q ] (p+ q < n):

Remark 1.3 If p+ q = n, we will see that C [Op;q ] 6= C [Op;q ] afterwards (see Lemma 1.4).

Proof. We postpone the proof of the normality of Op;q to x4 (Corollary 4.7).
(2) We calculate the codimension of the boundary component Op;q nOp;q. Put r = p+ q.

Then this is equal to

r(2n� r)� (r � 1)(2n� (r � 1)) = 2(n� r) + 1:
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Therefore, if r < n, the codimension is � 2. This implies (2) under the statement (1).
Q.E.D.

We denote by �+
n the set of all dominant integral weights of GLn, namely

�+
n = f(�1; : : : ; �n) 2 Z

n j �1 � �2 � � � � � �ng;

and

Pn = f(�1; : : : ; �n) 2 Z
n j �1 � �2 � � � � � �n � 0g;

the set of all partitions of length � n. For � 2 �+
n , �

(n)
� denotes the irreducible �nite

dimensional representation of GLn of highest weight � (with respect to the upper triangular
Borel subgroup B of GLn).

For p+ q � n, we put

�+(p; q) = f(�; 0; : : : ; 0; 
�) 2 Z
n j � 2 Pp; 
 2 Pqg; (1.3)

where 
� = (�
q; : : : ;�
2;�
1), for 
 = (
1; 
2; : : : ; 
q). We denote � = (�; 0; : : : ; 0; 
�) by
�� 
.

Lemma 1.4 The ring of regular functions on Op;q (or Op;q), denoted by C [Op;q ] (or C [Op;q ]),
inherits the action of KC = GLn �GLn.

(1) If p+ q < n, then we have

C [Op;q ] = C [Op;q ] '
X�

�2�+(p;q)

(�
(n)
� )� � �

(n)
� (as KC -module):

(2) If p+ q = n, then we have

C [Op;q ] '
X�

�2�+n

(�
(n)
� )� � �

(n)
� ;

while

C [Op;q ] '
X�

�2�+(p;q)

(�
(n)
� )� � �

(n)
� :

Proof. Recall the �xed subgroup Kp;q of xp;q in KC (cf. (1.2)). We have

C [Op;q ] ' C [KC ]
Kp;q ' IndKC

Kp;q
1Kp;q :

By the Frobenius reciprocity of algebraic groups (or from the second term of the above

expression), � = �
(n)
� � �

(n)
� 2 Irr(KC ) occurs in C [Op;q ] if and only if

HomKp;q(�; 1) 6= 0:
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We consider intermediate parabolic P � P � Kp;q, where

P =

24 GLp � �
0 GLn�(p+q) �
0 0 GLq

35 ; P = (opposite of P )

with the Levi-decompositions P = MN and P = MN .
We can write Kp;q = Lp;qNp;q, where Lp;q ' GLp�GLn0 �GLn0 �GLq (n

0 = n� (p+ q))
and Np;q = N �N . Here the subgroup GLp�GLq of Lp;q embeds in M �M diagonally. We
have

HomKp;q
(�; 1) ' Hom Lp;q

(~�; 1);

where

~� = �
(n)
� =n� (n)� � �

(n)
� =n� (n)� ;

and n, n are the Lie algebras of N , N , respectively.
Note that ~� is irreducible under the action ofM�M . since GLp�GLq embeds inM�M

diagonally, we see that

Hom Lp;q(~�; 1) 6= 0

if and only if ~� is of the form

(� (p)� � 1GLn0
� �

(q)
� )� (�

(p)
�0 � 1GLn0

� �
(q)
�0 )

with �0 = �� and � 0 = ��, and with the obvious notations.
The highest weight of �

(n)
� with respect to B is � = (�; 0; : : : ; 0; �), and the highest

weight of �
(n)
� with respect to B is (��; 0; : : : ; 0; ��). Thus � = ��, and it is dominant. If

p + q < n, this means that � 2 Pp and � = 
� for some 
 2 Pq. If p + q = n, � = (�; �) is
a dominant weight if �1 � � � � � �p � �1 � � � � � �q (�p � �1 is the essential restriction).
This proves (1) and the �rst half of (2) (cf. Proposition 1.2).

Next we assume that p+ q = n, and consider the second half of (2). We shall prove this

by explicitly constructing a highest weight vector for (�
(n)
� )� � �

(n)
� (� 2 �+

n ) which should
be unique up to a scalar. For

X =

�
0 A
B 0

�
;

put (
d+k (X) = (upper principal minor of A of size k)

d�k (X) = (lower principal minor of B of size k)
:
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Then a highest weight vector of (�
(n)
� )� � �

(n)
� (� = �� 
) is given by

d(�; 
) =

 
p�1Y
k=1

(d+k )
�k��k+1

!
(d+p )

�p �

 
q�1Y
j=1

(d�j )

j�
j+1

!
(d�q )


q :

This function extends to Op;q if and only if �p � 0 and 
q � 0. Q.E.D.

We shall give an alternative proof of the above lemma (at least for C [Op;q ]) in x4 (see
Theorem 4.6).

2 Theta lift of the trivial representation of U(p; q)

We reinterpret one of the results of Lee and Zhu [5] in a naive and intuitive way. First
consider a seesaw pair:

M 0 = U(p; q)� U(p; q) U(n; n) = G

diagonal [ � [
G0 = U(p; q) U(n)� U(n) = K

We still keep to the condition p+q � n. We consider the dual pair U(p; q)�U(n) of compact
type in Sp(2n(p + q);R). By the U(p; q) � U(n) duality, we have the decomposition of the
Weil representation ! of the metaplectic double cover Mp(2n(p + q);R):

! '
X�

�2�+(p;q)

L(�
(n)
� )� (�

(n)
� 
 �p;q) (as a U(p; q)e� U(n)e-module); (2.1)

where He denotes the inverse image of H in the metaplectic cover Mp(2n(p + q);R), and

�p;q = det(p�q)=2. If p+q � n, the irreducible representation L(�
(n)
� ) is a holomorphic discrete

series of U(p; q)e with minimal K-type (�
(p)
� 
 detn=2)� (�

(q)

 
 detn=2)� where � = � � 
 2

�+(p; q).
Now consider two U(p; q) � U(n)-dualities, one holomorphic and the other anti-

holomorphic (or contragredient), and make a tensor product on them:

! 
 !� '

0@ X�

�2�+(p;q)

L(�
(n)
� )� (�

(n)
� 
 �p;q)

1A


0@ X�

�2�+(p;q)

L(� (n)� )� � (� (n)� 
 �p;q)
�

1A

'
X�

�;�

�
L(�

(n)
� )
 L(� (n)� )�

� ��
�U(p;q)e

� ((�
(n)
� 
 �p;q)� (� (n)� 
 �p;q)

�): (2.2)

The last decomposition is the one as a representation of U(p; q)e� (U(n)e�U(n)e). For the
above decompositions, we refer the readers to [3] and [4]. Also the reference to [10] will be
helpful.
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Lemma 2.1 There exists a non-zero quotient map

L(��)
 L(��)
� ! 1U(p;q)e : surjective

if and only if � = �. In that case,

dimHom (g0; eK0)(L(��)
 L(��)
�; 1U(p;q)e) = 1;

where g0 = u(p; q) and K 0 = U(p)� U(q).

Proof. We shall prove this in a more general setting afterwards. See Lemma 5.1. Q.E.D.

Corollary 2.2 Howe's maximal quotient 
p;q(1U(p;q)e) has the K-type decomposition


p;q(1U(p;q)e)
��
eK
'

X�

�2�+(p;q)

(�
(n)
� 
 �p;q)� (�

(n)
� 
 �p;q)

�:

Proof. Howe's maximal quotient is canonically isomorphic to the dual of

Hom (g0; eK0)(! 
 !�; 1U(p;q)e):

Then the above Lemma 2.1 and (2.2) give the K-type decomposition. Q.E.D.

In the following, we write 
p;q(1) instead of 
p;q(1U(p;q)e).

Theorem 2.3 (Lee-Zhu) The maximal quotient 
p;q(1) is irreducible and gives the theta-

lift �p;q(1). Thus we get

�p;q(1)
��
eK
'

X�

�2�+(p;q)

(�
(n)
� 
 �p;q)� (�

(n)
� 
 �p;q)

�:

Proof. It is known that, in the stable range, the maximal quotient of the trivial repre-
sentation is irreducible, and coincides with the theta lift ([13, Proposition 2.1]; see also [6]).
Then the theorem follows from the above consideration. This proof is an alternative of that
of Lee and Zhu ([5]). Q.E.D.

Recall the identi�cation of nilpotent orbits in g with the nilpotent coadjoint orbits in g�.
Note that the associated variety is by de�nition an object in the dual space g�. Therefore, to
consider the associated variety of �p;q(1), we should take the dual orbit of Op;q with respect
to the Killing form, which is Oq;p as a result. Since the KC -module structure on C [Oq;p ] is the
contragredient of that of C [Op;q ], Theorem 2.3 together with Lemma 1.4 strongly suggests
that the associated variety of the theta lift �p;q(1) coincides with Oq;p. This is in fact true.
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Theorem 2.4 The associated cycle of �p;q(1) is [Oq;p] without multiplicity. In particular,

we have Deg �p;q(1) = degOq;p, where Deg �
p;q(1) denotes the Bernstein degree of �p;q(1).

Remark 2.5 The result of Przebinda et al. [2], [11], [12] determines the asymptotic support
of �p;q(1). From the result of Schmid and Vilonen, the asymptotic support and the associated
variety correspond to each other through Kostant-Sekiguchi correspondence. Therefore in
principle we can compute the associated variety of �p;q(1) from the known result of Przebinda
et al.

We shall give the proof in section 4.
Similar method can be used to compute the K-type decomposition of the theta lift of

unitary characters of U(p; q)e, and their associated cycles.

3 Degree of orbits Op;q

In this section, we derive an explicit formula for degOp;q = degOq;p = Deg �p;q(1).
Consider � 2 �+(p; q). Then

� = (�1; : : : ; �p; 0; : : : ; 0;�
1; : : : ;�
q)
put
= �� 
 (� 2 Pp; 
 2 Pq):

From the explicit description of the highest weight vector for (�
(n)
� )� � �

(n)
� (cf. (1)), we

conclude that the homogeneous degree of (�
(n)
� )� � �

(n)
� is

k�k = j�j+ j
j:

Note that k�k 6= j�j � j
j. Therefore, to get the degree of the projective variety Op;q, we
consider the following Hilbert-Samuel function

H(k) =
X

k�k�k;�2�+(p;q)

dim(�
(n)
� )� � �

(n)
� =

X
k�k�k;�2�+(p;q)

(dim ��)
2: (3.1)

By Weyl's dimension formula, we have

dim �� =
Y

1�i<j�n

h�+ �; "i � "ji

h�; "i � "ji
;

where h�; "ii = �i and

� =

�
n� 1

2
; : : : ;

n + 1

2
� k; : : : ;

1� n

2

�
:
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The result is the following rather complicated formula (here n0 = n� (p+ q)):

dim �� =

Q
p+1�i<j�p+n0(j � i)Q

1�i<j�n(j � i)
�Y

1�i<j�p

(�i � �j + j � i)
Y

1�i�p<j�p+n0

(�i + j � i)�

Y
1�i�p;p+n0<j�n

(�i + 
j�(p+n0) + j � i)�

Y
p+n0<i<j�n

(
j�(p+n0) � 
i�(p+n0) + j � i)
Y

p<i�p+n0<j�n

(
j�(p+n0) + j � i):

From this formula, H(k) becomes, for a suÆciently large k,

H(k) =
kd

p!q!
�Qn�1

j=n0 j!
�2 Z

W

 
pY
i=1

xi

qY
j=1

yj

!2n0 Y
1�i�p;1�j�q

(xi + yj)
2 �

j�(x1; : : : ; xp)j
2j�(y1; : : : ; yq)j

2

pY
i=1

dxi

qY
j=1

dyj +O(kd�1);

where � denotes the di�erence product, and

W = f(x; y) j xi � 0; yj � 0;

pX
i=1

xi +

qX
j=1

yj � 1g; (3.2)

d = (p+ q)(2n� (p+ q)) = n2 � (n0)2:

We therefore have the following

Theorem 3.1 Put n0 = n� (p+ q). Then

degOp;q =
(n2 � (n0)2)!

p!q!
�Qn�1

j=n0 j!
�2 Z

W

 
pY
i=1

xi

qY
j=1

yj

!2n0 Y
1�i�p;1�j�q

(xi + yj)
2 �

j�(x1; : : : ; xp)j
2j�(y1; : : : ; yq)j

2

pY
i=1

dxi

qY
j=1

dyj;

where W is the region given in (3.2).

We expect that we can calculate this integral by the similar method as in [9].

Example 3.2 Let us consider the simplest case which is non-trivial, i.e., the case where
p = q = 1. Then we get

degO1;1 =
(4(n� 1))!

f(n� 2)!(n� 1)!g2

Z
x+y�1; x;y�0

(xy)2(n�2)(x + y)2dxdy: (3.3)
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Lemma 3.3 We have Z
x+y�1; x;y�0

x�y�(x + y)
dxdy =
B(� + 1; � + 1)

� + � + 
 + 2
;

where B(s; t) denotes the Beta function.

From this lemma, we get

degO1;1 =
(4(n� 1))!

f(n� 2)!(n� 1)!g2
f(2(n� 2))!g2

4(n� 1)(4(n� 2) + 1)!
=

(4n� 5) (�(2n� 1))2

2 (2n� 3) (�(n))4
:

4 Nullcone and the geometry of nilpotent orbits

In this section, we consider a dual pair (G0; G) = (U(p; q); U(r; s)). Afterwards we will take
r = s = n and assume that p+ q � n; but we do not assume any restriction on the pair for
the moment.

Let K 0
C
= GLp�GLq and KC = GLr�GLs, which are the complexi�cations of maximal

compact subgroups K 0 = U(p) � U(q) � G0 and K = U(r) � U(s) � G. We de�ne a
K 0

C
�KC -action on

W =Mp+q;r+s(C )

as follows:

r s

Mp+q;r+s 3 T =

�
X Z
Y W

�
p
q
; k = (a; b)� (g; h) 2 K 0

C
�KC ;

k � T =

�
aX tg ta�1Zh�1

tb�1Y g�1 bW th

�
:

We de�ne two K 0
C
�KC -equivariant maps�

'1 : Mp+q;r+s �! Mr;s �Ms;r = s;
'2 : Mp+q;r+s �! Mp;q �Mq;p = s0

by �
'1(T ) = ( tXZ; tWY );
'2(T ) = (X tY;W tZ):

Here KC (resp., K 0
C
) acts on s (resp., s0) by the restriction of the Adjoint action, and K 0

C

(resp., KC ) acts on s0 (resp., s) trivially.
For D 2 s and D0 2 s0, we say that D corresponds to D0 if there exists T 2 Mp+q;r+s

such that '1(T ) = D, and '2(T ) = D0. Further we say a KC orbit O corresponds to a K 0
C

orbit O0 if there exists D 2 O and D0 2 O0 such that D and D0 correspond.

Now put r = s = n, and assume that p + q � n.
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Lemma 4.1 By the maps, we get

Op;q = '1('
�1
2 (0)) � Mn �Mn = s;

i.e., the nilpotent KC -orbit Op;q � s corresponds to the trivial orbit f0g � s0 = Mp;q �Mq;p.

Proof. Take T 2 '�12 (0). Then we immediately have

'1(T ) =

�
tXZ

tWY

�
2 Xnull

by the de�nition of '2. Moreover, it is easy to see that rank tXZ � p and rank tWY � q.
Thus we conclude that '1('

�1
2 (0)) � Op;q.

To see the reversed inclusion, let X = Z = [1p 0] andW = Y = [0 1q]. Then '1(T ) = xp;q
and '2(T ) = 0. Thus xp;q 2 '1('

�1
2 (0)). Since '1 and '2 are K

0
C
�KC -equivariant, we have

Op;q � '1('
�1
2 (0)). Taking the closure, we conclude that Op;q � '1('

�1
2 (0)). Q.E.D.

Next we consider the null cone de�ned by

N = '�12 (0) =

��
X Z
Y W

�
2 W j X tY = 0;W tZ = 0

�
; W =Mp+q;2n:

It is K 0
C
�KC -stable.

Let I = C [W ]KC be the algebra of KC -invariant polynomials on W. By the classical
invariant theory, the matrix elements of X tY and W tZ generate I. Thus N is the variety
of zeros of all the invariants without constant term.

Proposition 4.2 Assume that p + q � n. Then the null cone N is an irreducible variety

of complete intersections. Its de�ning ideal is generated by KC -invariants of degree two.

Moreover, if p+ q < n, it is normal.

Proof. We apply [1, Theorem 2.2.11]. For details, see [8]. Q.E.D.

Let H be the space of KC -harmonic polynomials, and J+ the ideal generated by KC -
invariants in C [W] which vanish at the origin. The following lemma is well-known.

Lemma 4.3 We have

C [W ] = H� J+:

Remark 4.4 If p+ q � n, then C [W ] ' H
 C [W]KC holds.

Since J+ = I(N) is the de�ning ideal of N by Proposition 4.2, the function ring on N

coincides with H. Note that H carries the action of K 0
C
= GLp�GLq and KC = GLn�GLn.

We record this as

Lemma 4.5 The function ring on the null cone N = '�12 (0) coincides with the KC -harmonic

polynomials on W = Mp+q;2n:

C [N] ' H (as a K 0
C
�KC -module):

12



Now we describe the K 0
C
� KC -module structure of H. Consider the two halves of the

matrix T :

T+ =

�
X
Y

�
2Mp+q;n =:W

+; T� =

�
Z
W

�
2Mp+q;n =:W

�:

Then by U(p; q)� U(n)-duality, we know

C [W+ ] '
X�

�2�+(p;q)

L(� (n)� )� � (� (n)� )�;

as a U(p; q)�U(n)-module. Note that C [W+ ] is the dual of the symmetric algebra S(W+).
Therefore, we take the dual on the right hand side. In this setting, the space of GLn-

harmonics of type (�
(n)
� )� has the form

�
(�

(p)
� )� 
 �

(q)



�
� (�

(n)
� )�, where

�
(�

(p)
� )� 
 �

(q)



�
is

the lowest K 0 = U(p) � U(q)-type of L(��)
� tensored �0n;n ( �0n;n = detn=2 � det�n=2 ) and

� = �� 
 (cf. (1.3)).
Let

H+ = H \ C [W+ ]; H� = H \ C [W� ]:

Then we have

H+ '
X�

�2�+(p;q)

�
(� (p)� )� 
 � (q)


�
� (�

(n)
� )�;

where � = �� 
 (cf. (1.3)). Similarly (but conjugated), we have

C [W� ] '
X�

�2�+(p;q)

L(� (n)� )� � (n)� ;

and

H� '
X�

�2�+(p;q)

�
�
(p)
� 
 (�

(q)
Æ )�

�
� � (n)� ;

where � = � � Æ.

Theorem 4.6 Put N = '�12 (0), the null cone de�ned by KC -invariants. Then we have

C [N] ' H = H+ 
 H�

'
X�

�;�2�+(p;q)

�
((� (p)� )� 
 �

(p)
� )� (� (q)
 
 (�

(q)
Æ )�)

�
�

�
(�

(n)
� )� � � (n)�

�
;

as K 0
C
�KC -module. Furthermore the map '�1 induces a ring isomorphism:

'�1 : C [Op;q ]
�
�! C [N]K

0

C : (4.1)
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Proof. We have to show that (4.1) is an isomorphism.
Look at the original map '1 : W �! s. Then the induced map '�1 : C [s] �! C [W ] is

given by

'�1(Aij)(T ) =

pX
k=1

XkiZkj; '�1(Bij)(T ) =

qX
k=1

WkiYkj;

where T =

�
X Z
Y W

�
2 W and f(Aij; Bij) j 1 � i; j � ng is the set of coordinates on

s = Mn �Mn. By the classical invariant theory, the right hand side of the above equations
generate the ring of K 0

C
-invariants in C [W ], so that Image'�1 = C [W ]K

0

C .
Now consider the restriction '1 : N �! s, which we denote by the same notation. By

the above consideration, we know that the induced map actually gives an algebra morphism

'�1 : C [s] �! C [N]K
0

C � C [N] = C [W ]=I(N);

and it is surjective. Now, since C [s]=Ker '�1 = C [Op;q ] by Lemma 4.1, we conclude the result.
Q.E.D.

Corollary 4.7 If p+ q < n, the nilpotent orbit Op;q is an irreducible normal variety.

Finally we are ready to prove the following proposition, which implies Theorem 2.4.

Proposition 4.8 The associated variety of �p;q(1) is Oq;p.

Proof. We identify the nilpotent orbit Oq;p with a coadjoint orbit via Killing form. Then
the corresponding orbit is Op;q. In this proof, we always consider Op;q as a coadjoint nilpotent
orbit. (See also the remark before Theorem 2.4.)

We take a coordinate system on s = Mn �Mn 3 (A;B) as fAij; Bij j 1 � i; j � ng, as
before. Note that we regard Aij as a linear function on s which extracts the (i; j)-element of
A. So Aij; Bij 2 C [s]. Take one of the homogeneous de�ning equations f(A;B) = 0 of Op;q.
Then we have

'�1(f(A;B)) = f(S; T ); Sij = '�1(Aij) =

pX
k=1

XkiZkj; Tij = '�1(Bij) =

qX
l=1

WliYlj:

By Theorem 4.6 and its proof, we know that f(S; T ) 2 I(N)K
0

C . In particular, there exist
polynomials e�kl 2 C [W ] such that

f(S; T ) =
X
1�k�p
1�l�q

e+kl � '
�
2(Ckl) +

X
1�k�q
1�l�p

e�kl � '
�
2(Dkl);

where (C;D) 2 Mp;q �Mq;p = s0 and fCkl; Dklg is a system of coordinate functions on s0.

14



The Weil representation associated to the dual pair U(p; q)�U(n; n) is realized on C [W ]

by the Fock model. Let eAij be the operator of the Weil representation of the matrix�
0 0
Eji 0

�
2 s:

De�ne eBij, eCkl, eDkl similarly. Then we have

eAij = 2

pX
k=1

@2

@Xki@Zkj
�

1

2

qX
l=1

WliYlj;

eBji = �
1

2

pX
k=1

XkiZkj + 2

qX
l=1

@2

@Wli@Ylj

up to non-zero constant multiplication.
If we take the K-stable good �ltration of �p;q(1) induced from the total degree �ltration

of C [W ], eAij and eBij will act on the graded module gr �p;q(1) as

eBji = �
1

2

pX
k=1

XkiZkj; eAij = �
1

2

qX
l=1

WliYlj:

These formulas coincide with Sij and Tij above up to constant multiplication. Therefore we
have

(�2)�deg ff( eBji; eAij) =
X

1�k�p;1�l�q

e+kl � '
�
2(Ckl) +

X
1�k�q;1�l�p

e�kl � '
�
2(Dkl)

on gr �p;q(1). Note that

'�2(Ckl) =
nX
i=1

XkiYli; '�2(Dkl) =
nX
i=1

ZkiWli:

On the other hand, the operators eCkl and eDkl are given by

eCkl = 2
nX
i=1

@2

@Xki@Yli
�

1

2

nX
j=1

WkjZlj � �
1

2

nX
j=1

WkjZlj;

eDlk = �
1

2

nX
i=1

XkiYli + 2
nX
j=1

@2

@Wlj@Zkj

� �
1

2

nX
i=1

XkiYli;

which should vanish on gr �p;q(1) because �p;q(1) is associated to the trivial representation
of U(p; q)e. Hence we conclude '�2(Ckl) and '�2(Dlk) act trivially on gr �p;q(1). From this we

see that f( eBji; eAij) = 0 on gr �p;q(1). This means that the associated variety of �p;q(1) is
contained in Oq;p. Comparing dimension, we conclude that they must coincide. Q.E.D.
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5 Generalities on Harish-Chandra modules

In this section, we consider general (g; K)-modules, where g is the complexi�cation of the
Lie algebra of a semisimple Lie group G and K is a maximal compact subgroup of G.

Let H be a (g; K)-module which is K-admissible, i.e., dimHomK(H; �) < 1 for any
� 2 Irr(K). We also assume that H is locally K-�nite, which means that H = HK where
HK denotes the space of K-�nite vectors in H. Then, H� = Hom C (H; C )K is also K-
admissible and we have a canonical isomorphism H ' (H�)�. Note that H� does not denote
the algebraic dual of H.

Lemma 5.1 Let H1 be a (g; K)-module which is locally K-�nite. Then, for any K-

admissible (g; K)-module H2 which is locally K-�nite, we have

Hom (g;K)(H1 
H�
2 ; 1) ' Hom (g;K)(H1; H2):

We shall omit the proof, as it is straightforward.

Corollary 5.2 Let � be a �nite dimensional (g; K)-module. Then we have

Hom (g;K)(H1 
H�
2 ; �) ' Hom (g;K)(H1; H2 
 �);

under the same assumption on H1 and H2 as in Lemma 5.1.

Proof. Since H1 
H�
2 is locally K-�nite, we can apply Lemma 5.1 and get

Hom (g;K)(H1 
H�
2 ; �) ' Hom (g;K)(H1 
H�

2 
 ��; 1):

Note that H�
2 
�� ' (H2
�)� because � is �nite dimensional. Now apply Lemma 5.1 again.

Q.E.D.

Corollary 5.3 Let ! be the Harish-Chandra module of the Weil representation ofMp(2n(p+
q);R). We consider a dual pair G�G0 = U(p; q)�U(n) in Mp(2n(p+ q);R), and regard !

as a (g; eK)-module. Then for any irreducible Harish-Chandra module L of (g; eK), we have

Hom (g; eK)(! 
 !�; L�) ' Hom (g; eK)(L
 !; !);

Proof. Note that ! 
 !� is locally eK-�nite. Also we note that ! is eK-admissible. Now
we can apply Lemma 5.1 twice and get the desired formula. Q.E.D.

6 Theta lift of a holomorphic discrete series

We keep to the notation in x2. In particular L(��) denotes the holomorphic discrete series

representation of U(p; q)e which corresponds to �� = �
(n)
� 2 Irr(U(n)). Note that � 2

�+(p; q), since p+ q � n. We shall derive a K-type formula for its theta lift.
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Lemma 6.1 For any � 2 Irr(U(p; q)e), the theta lift �p;q(�) is non-zero if and only if there

exists a pair (�; �) such that

L(��)
 L(��)
�
��
�U(p;q)e

�! �

is a non-zero (hence surjective) quotient map. In this case, the maximal quotient 
p;q(�)
contains K-type (�� 
 �p;q)� (�� 
 �p;q)

� at least once.

Proof. Arguments are the same as in x2, though we use � instead of 1. Q.E.D.

Now take � = L(��), a holomorphic discrete series. Then by Lemma 5.1, we have

Hom (g0; eK0)(L(��)
 L(��)
�; L(��)) ' Hom (g0; eK0)(L(��)
 L(��)

� 
 L(��)
�; 1U(p;q)e): (6.1)

Lemma 6.2 Let c ��;� be a branching coeÆcient de�ned by

�� 
 �� '
X�

�

c ��;��� (as GLn-modules):

If n is even, we have

L(��)
� 
 L(��)

� '
X�

�2�+(p;q)

c ��;�L(���n=2Æp;q )
�;

Æp;q = Ip� Iq = (1; : : : ; 1; 0; : : : ; 0;�1; : : : ;�1):

Proof. Consider the Weil representation associated to the dual pair U(p; q)� U(2n). As
a (U(p; q)� U(n))2-module, we have

! 
 ! '

0@ X�

�2�+(p;q)

L(� (n)� )� (� (n)� 
 �p;q)

1A


0@ X�

�2�+(p;q)

L(� (n)� )� (� (n)� 
 �p;q)

1A

'
X�

�;�

�
L(� (n)� )
 L(� (n)� )

�
�
�
(� (n)� 
 �p;q)� (� (n)� 
 �p;q)

�
; (6.2)

while as a U(p; q)� U(2n)-module

! 
 ! '
X�

�2�+(p;q)

L(� (2n)� )� (� (2n)� 
 �p;q): (6.3)

Since

� (2n)�

��
U(n)�U(n)

'
X�

�;�

c ��;��
(n)
� 
 � (n)� ;

we have

(6.3) =
X�

�;�

 X�

�

c ��;�L(�
(2n)
� )

!
�
�
(� (n)� 
 �p;q)� (� (n)� 
 �p;q)

�
: (6.4)
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Comparing (6.2) and (6.4), we get

L(� (n)� )
 L(� (n)� ) '
X�

�

c ��;�L(�
(2n)
� ): (6.5)

Since p+ q is smaller than n and hence 2n,

L(� (2n)� ) ' L(�
(n)
��n=2Æp;q

); Æp;q = Ip� Iq

holds if we shift � by n=2Æp;q. Here we use the assumption that n is even. Also we identify
� = (�; 0; : : : ; 0; 
�) (� 2 Pp; 
 2 Pq) of length 2n (zero occurs 2n� (p+ q)-times between �
and 
�) and � = (�; 0; : : : ; 0; 
�) (zero occurs n� (p+ q)-times between � and 
�) of length
n.

Take the K-�nite part of the dual of (6.5). Since the K-types of L(�
(n)
� ) 
 L(�

(n)
� ) has

�nite multiplicities, we get the formula in the lemma. (Or, we can consider !�
!� from the
beginning.) Q.E.D.

We apply the above lemma to (6.1). Then we get

Hom (g0; eK0)(L(��)
 L(��)
�; L(��)) '

Y
�

c ��;� Hom (g0; eK0)(L(��)
 L(���n=2Æp;q )
�; 1U(p;q)e):

The last expression is already studied by Lee-Zhu (see Lemma 2.1 and Corollary 2.2), which
says that

dimHom (g0; eK0)(L(��)
 L(���n=2Æp;q )
�; 1U(p;q)e) � 1;

and the above mentioned dimension is one if and only if � = � � n=2Æp;q holds. So we get

Theorem 6.3 Assume that n is even. Let L(��) be a holomorphic discrete series and con-

sider the theta lift �p;q(L(��)) 2 Irr(U(n; n)e). Then we have

�p;q(L(��))
��
eK
'
X�

�;�

c ��;�(�
(n)
��n=2Æp;q


 �p;q)� (� (n)� 
 �p;q)
�:

Proof. Put � = L(��). By the arguments around [7, Lemma 2.2], we know that 
p;q(�) is
already irreducible for a (holomorphic) discrete series representation �. Note that p+ q � n.
By the calculation above, we know that 
(�)

��
eK
is exactly equal to the right hand side of

the desired formula. Q.E.D.

We shall omit the result for odd n, which is similar.

Problem 6.4 Consider the same thing for a �nite dimensional irreducible representation
� 2 Irr(U(p; q)e), which is not unitary.

18



7 Further results

Here we would like to indicate several generalizations of the results of this note.

� We can consider the associated cycles of the theta lift of holomorphic discrete series
representations. In particular, if we take a spherical holomorphic discrete series, which
means that the minimal K-type is one-dimensional, then it has a multiplicity-free
associated cycle with an irreducible associated variety.

� We have a generalization of the results here to the pair U(p; q)� U(r; s) in the stable
range. However, the description of the parameters gets more complicated.

� We have similar results for the other type I dual pairs in stable range (cf. [8]).

These generalizations will be treated in a forthcoming paper.
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