CLASSIFICATION OF SPHERICAL NILPOTENT ORBITS FOR U(p,p)

KYO NISHIYAMA

To Mas

ABSTRACT. We consider the symmetric pair (G, K) = (U(p,q),U(p) x U(q)). For this
pair, we classify spherical nilpotent Kc¢-orbits which are theta lift in the stable range.
Moreover, for the pair (G, K) = (U(p,p),U(p) x U(p)) where p = ¢, we prove that a
spherical nilpotent Kc-orbit must be a theta lift. As a consequence, we get a complete
classification of the spherical nilpotent K¢-orbits for the symmetric pair (U(p,p), U(p) x

U(p)).
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INTRODUCTION

Let G be a reductive Lie group and K a maximal compact subgroup of G. We denote by
g (resp. €) the complezified Lie algebra of G (resp. K). Then the choice of K determines
a Cartan decomposition g = €@s, and the complexification K¢ acts on s by the restriction
of the adjoint action. Let N (s) be the nilpotent variety consisting of all nilpotent elements
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in 5. The action of K¢ preserves AN/ (s) and it has a finite number of Kc-orbits ([5]). We
call them nilpotent Kc-orbits for the symmetric pair (G, K), or just for G.

In this article, we investigate spherical nilpotent Kc-orbits for the pair (G, K) =
(U(p,q),U(p) x U(q)). A nilpotent Kc-orbit @ is called spherical if a Borel subgroup
of K¢ has an open dense orbit in @. These orbits are relatively small and play a funda-
mental role in the representation theory of G (see, for example, [4], [7], [8], etc.). For a
complex simple algebraic group G, there is a complete classification of spherical nilpotent
Glc-orbits by Panyushev ([12]). However, for the case of symmetric pairs, there seems no
such classification of spherical nilpotent orbits. Here, as a first step, we give a complete
classification for the pair (U(p,p),U(p) x U(p)).

Our main tool of the classification is the notion of theta lifting of nilpotent orbits in the
stable range (see §1 ; we refer [9] for detail). In fact, we classify all the spherical nilpotent
Kc-orbits for G = U(p, q) which are theta lift in the stable range.

Theorem A (Theorem 2.1). Let (G, K) = (U(p,q),U(p) x U(q)) as above. Let D be a
signed Young diagram of signature (p, ¢) and Qp be the corresponding nilpotent Kc-orbit
for G = U(p, q). Then Qp is a theta lift in the stable range if and only if /(D) > max{p, ¢},
where ¢(D) is the length of D.

If Op is a theta lift, then it is spherical if and only if the shape of D is of the following
form:

35 - 2k . 1] e=0,1; Kk 1>0; 3c+2k+1l=p+q.

Since the length of [3° - 2% - 1!] is ¢ + k + [, the above theorem tells us that the orbit
corresponding to [3° - 2¥ - 1] with & + k + [ > max{p, ¢} is spherical. According to the
classification by Panyushev, spherical G¢-orbits for type A is given by Young diagrams
[2% . 1!]. Therefore, Theorem A provides an example of a spherical nilpotent Kc-orbit
whose G¢-hull is not spherical.

Unfortunately, a spherical nilpotent orbit need not be a theta lift in the stable range
in general. However, it is so in the case of p = q¢. We prove the following theorem.

Theorem B (Theorem 3.1). Let (G, K) = (U(p,p),U(p) x U(p)) and D a signed Young
diagram of signature (p,p). The corresponding nilpotent K¢-orbit Qp is spherical if and
only if the shape of D is of the following form:

352817 e=0,1; k1>0; 3c+2k+I=2pandec+k+1>p.

In particular, spherical nilpotent K¢-orbits are obtained by the theta lifting in the stable
range.

Acknowledgement. We thank Chengbo Zhu, Roger Howe and David Vogan for useful
discussions.
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1. THETA LIFTING OF NILPOTENT ORBITS

In this section, we review the notion of the theta lift of nilpotent orbits for symmetric
pairs in the case of indefinite unitary groups. For general and detailed discussion, see [9].

We denote U(p,q) and its maximal compact subgroup U(p) x U(q) by G and K re-
spectively. Let us begin with the description of the nilpotent orbits for the symmetric
pair (G,K) = (U(p,q),U(p) x U(q)). Let g be the complexification of the Lie algebra
Lie (G), and similarly ¢ denotes the complexification of Lie (K). Let g = €+ s be the
corresponding Cartan decomposition over C. We realize it as

o (O] 0 0 [Mha©)
PES T T ) T\ 0 )T

For a subset S C g, we denote by N(S) the set of all nilpotent elements in S. Then,
we call N (s) the nilpotent variety for the symmetric pair (G, K). Let us denote by the
complexified algebraic group of K by K¢. Then K¢ acts on s via the restriction of
the adjoint action, and preserves the nilpotent variety N'(s). It is well known that the
Kc-orbits in N (s) is finite, and that they are classified by the signed Young diagrams.
Namely, the Kc-orbits in A/ (s) are classified by the Young diagrams of size p + ¢, whose
boxes are occupied by p plus signs and ¢ minus signs. The signs must appear mutually
in rows. For details, see [1, Th. 9.3.3] for example.

Take another unitary group and put G' = U(m,n). We assume the stable range con-
dition m + n < p,q. The pair (G,G") forms a reductive dual pair in a large symplectic
group G = Sp(2(p+¢)(m+n),R). In the symplectic group, there are four reductive dual
pairs related to (G, G'), which is called diamond pairs [2]. Let us denote:

A
M =U(p,q)° B G=U(p,q)
U U
L=L*xL =Up?2xUQ? 5 K=K+*xK =U(p)xU(q),

where A denotes the diagonal embedding. Similarly, we denote M', G’, L', K’ replacing
p and ¢ by m and n respectively. Then, the four dual pairs in G are (G,G"), (M, K"),
(L, L"), (K, M'). Put

W =My gmn(C) = {(é g) |Ae Mym,Be M,,,Ce€Mym,D e Mq,n}

=Wre W™ = Mymn(C) & Mymin(C).
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Then K¢ = GL,(C) x GL,(C) and K. = GL,,(C) x GL,(C) act on W as

A B\ ([ gA'h  lg'Bh!
((91792)7 (hl,ha))' <C’ D) = <tg2—10h11 gthhg )

(g1, 92) € GL,(C) x GL,(C), (hy,hs2) € GL,,(C) x GL,(C).

We fix a Cartan decomposition g = €@ s as above, and g’ = ¢ @ s is chosen similarly.
We identify

5= M,4(C) & Myy(C), 8" = My, (C) & My (C).

Then there is a natural double fibration of W by s and &', which are explicitly given as
follows.

<p;W9<é g)»—>(AtC,DtB)65, w:W9<é g>n—>(tAB,tDC)€5’.

These double fibration maps are called moment maps, and they are K¢ x K¢-equivariant
with the trivial K¢-action on &', and the trivial K{-action on s respectively. The maps ¢
and 1 are almost the same. Therefore we will treat only the map ¢ in the following.

The map ¥ induces an algebra homomorphism ¢* : C[s'] — C[W] by

P
Y (w5) = Zak,ibk,j, X = (zij) € Mpu(C),
k=1
q
Vi yig) =Y gdis, Y = (Yig) € Mo (C).
=1
G Ly-invariants (resp. G'L,-invariants) on C[W ] (resp. C[WW~]) are generated by ¢ (z; ;)*’s
(resp. ©¥(yi;)*’s). Hence ¢ : W — ¢ is an affine quotient map by K¢, which is surjective
under the condition of the stable range. Notice that ¢ is not surjective in general.

Note that p(p~'(N(s'))) C N (s), i.e., p o p~! carries nilpotent elements to nilpotent
elements. This easily follows from the fact that (A, B) € M, ,® M,, = s belongs to N (s)
if and only if AB is a nilpotent matrix.

Take a nilpotent K/-orbit @. Since ¢ and ¢ are K¢ x Kh-equivariant, o(1p~1(Q)) C
N (s) is a union of Kc-orbits. However, it has much better properties.

Theorem 1.1 ([9]). Assume the stable range condition m +n < p,q. Then the scheme
theoretic inverse image ¢ '(Q/) = @ xy W is reduced and irreducible. Its image
©(yp~1(@)) is the closure of a single nilpotent K¢-orbit O : ¢(¢p~1(QV)) = O.

Thus we have a correspondence
0:N(s)/K->0Q — 0 e N(s)/Kc,

which is called the theta lifting. Let D’ be a signed Young diagram corresponding to @/,
and we denote it by @ = @,,. Then the Young diagram D corresponding to the theta
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lift Op = #(0Q,,,) is obtained by adding an extra box to the end of each row of D' ; if the
row is empty, we place one box and make the total number of boxes equal to p + ¢q. The
signs in the added boxes are automatically determined by those in D’. For more detailed
description of the correspondence D' — D, see [11].

Example 1.2. Here we give an example for the pair U(4,4) x U(2,1).
BE

+_
e

+H — |+ T
- a

If we take various G’ = U(m,n) satisfying m + n < p,q, we obtain a number of
lifted nilpotent Kc-orbits. However, they do not exhaust all the nilpotent orbits. Let
Op C N (s) be a nilpotent K¢-orbit corresponding to the signed Young diagram D. By
the length ¢ = ¢(D) of D, we mean the number of non-empty rows in D (in other words,
the number of boxes in the first column). Then we have the following

BT

—[+

—[+
s

HH —

HERERESERES

[T[F[+][+
IR ESES e

LI+

Lemma 1.3. A nilpotent Kc-orbit Qp is a theta lift from certain nilpotent orbit in the
stable range if and only if /(D) > max{p, ¢} holds.

Remark 1.4. We make a convention that the trivial orbit {0} is lifted from the (ideal)
trivial orbit of the trivial group U(0,0). This enables us to state our results in a uniform
fashion.

Proof. The original D' should be the diagram obtainable by deleting the last box in each
row of D. So, we delete ¢(D) boxes. Therefore the condition of the stable range becomes
m+n=p+q—{(D) < p,q, which is equivalent to the condition given in the lemma. I

Since K¢ acts on the closure @, it naturally acts on the regular function ring C[Q].
Let us describe the K¢-module structure of the regular function ring of the closure of the
lifted orbit @ = #(Q'). To state it, we need some notations.

Let P,, be the set of all partitions of length < m and consider o € P,,, as a dominant
integral weight for GL,, as usual. Then 7™ denotes the irreducible finite dimensional
representation of GL,, with highest weight «, and T g contragredient. For a € P,
and 3 € P,, we put

a®,f=(,a9,...,00,0,...,0,—Fy,...,—01)=(,0,...,0,6%) € ZP

where there appear (p—(m+n))-times of zeroes between « and 3*. This is also a dominant
integral weight for GL,.

The following theorem is proved in [9] (also see [3, Th. 2.5.4] for the structure of
harmonics), and it plays a key role in determining the spherical nilpotent orbits among
the lifted ones.
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Theorem 1.5. Let @ C N(s') be a nilpotent Kg-orbit and O = §(Q') C N(s) its
theta lift. Then the Kc-module structure of the regular function ring of Q is completely
described via that of . Namely, as a K¢-module, we have

e ® n n)x raV *
€] = Y Hom g (14" @ ™) B (7 @ 7§, CO) & (72,5 B 712,5),
Saehy

where K¢ = GL, x GL, acts trivially on the space of multiplicity Hom K&(- ).

2. SPHERICAL NILPOTENT ORBITS

Let X be a variety on which K¢ acts regularly. Then X is called a spherical variety
(or more specifically, Kc¢-spherical variety), if there exists a Borel subgroup Bg,. of K¢
which has an open dense orbit in X. If a nilpotent K¢-orbit @ is a spherical variety, it is
called a spherical nilpotent orbit. By definition, Q is a spherical orbit if and only if O is
spherical. Since O is a closed affine cone, it is spherical if and only if the regular function
ring C[0O] decomposes without multiplicity as a Kc-module, i.e., the action of K¢ on O
is multiplicity-free.

Let D be a signed Young diagram of signature (p,q). We denote by A\(D) = \ =
(A1, Ag,y ..., Ay) the partition of p + ¢ corresponding to D, i.e., A; is the number of boxes
in the ¢-th row of D. We call A the shape of D.

Theorem 2.1. Let Qp be a nilpotent Kc-orbit for G = U(p,q) corresponding to the
signed Young diagram D. Assume that /(D) > max{p, ¢}, where £(D) is the length of D.
Then Q) is spherical if and only if its shape A\(D) is given by

AMD)=[3-2F-17 =0,1; k1>0; 3c+2k+l=p+q.

Remark 2.2. (1) The shape A(D) determines the Jordan type of nilpotent elements from
Op. This means that the sphericality does not depend on OQp but on its complex hull
Ge - Op.

(2) Panyushev [12] completely classified the spherical nilpotent orbit for complex simple
Lie algebra. According to his classification, only the orbits with Jordan types [2¥ - 1] are
Gc-spherical. So, if ¢ = 1, the complex hull of the orbit above is not spherical under the
action of Gc.

The rest of this section is devoted to the proof of Theorem 2.1.

2.1. Spherical lifted orbits. Let us check that the nilpotent orbits listed in Theorem
2.1 are in fact spherical.

If the shape of a signed Young diagram is [2¥ - 1'], then it is a theta lift from the trivial
orbit of U(m,n) (m +n = k), where m (resp. n) is the number of rows (resp. [=[4)
in D. By Corollary 3.2 in [9], the theta lift from the trivial orbit is spherical.
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Next, we consider a signed Young diagram D of shape [3 - 2% - 1!]. Let Qp be the
corresponding nilpotent Kc-orbit which is lifted from a nilpotent K¢-orbit @, . Without
loss of generality, we can assume that D and D' are of the following form.
+-[+
+ i

B +
—|+ -+

+ -

where, in D, the row appears (m — 1)-times, and the row appears (n — 1)-times
(m,n > 1). Then, @), is a nilpotent K{-orbit for G' = U(m,n). Note that O = O, is
also a theta lift from the trivial orbit for U(1) = U(1,0). Thus we have

where Py = Zs is the set of partitions of length 1 or 0. Substituting C[Q’] in Theorem
1.5 by the above formula, we get a decomposition

COb] = > (X2 Homer, (0" @™ 715 o)") ©

a,Y€Pm  p>0
B,6€Pn

Hom g, (Tén) @7, 7—((n) ,0))> @ ( o(@) g B 7—7(63 )

1,0,...

)« (9)
If the multiplicity of 7 TatyB X 7'76 5
|6 = |d] = p, where |a| = oy + - - - + auy, is the size of a partition a. Thus p is uniquely

determined by the pair (Oz,’y) or (ﬁ, J). Let us assume that p = |a| — || and consider

does not vanish, we must have |o| — |y| = p and

(m) *) m m (m)

By Pieri formula, the last expression does not vanish if and only if the skew diagram
« — 7 is a horizontal p-strip (see [6, (5.16)] for Pieri formula and the terminologies used
here), and in that case 7™ appears in 7™ ® 7'((:13 0y With multiplicity one. The similar
assertion holds for § and J. o

Thus we get a multiplicity—free decomposition

* q)
Z a@ B gT’Y@q‘S’

776Pm
B,0€Pn
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where the summation is taken over «, 3, v, ¢ satisfying
p=la|—|v|=18] — || ; and, o« — v and 3 — § are horizontal p-strips.
This proves that Qp is spherical.

2.2. Non-spherical lifted orbits. We are to prove that the rest of lifted orbits are not
spherical. We prepare two lemmas.

Lemma 2.3. Let O be a theta lift of @' in the stable range. if Q is spherical, then O/
is spherical too. In other words, theta lifting does not produce any spherical orbit from
non-spherical ones.

Proof. We assume that @ is not spherical so that C[Q’] contains some representation
n(tm) ® TTS”) with multiplicity > 2. Let us denote the multiplicity by M, ,. Then we have

Hom g1, iz, (70* @ 7MY R (7§ @ 70V*), C[O'))

> M, ,Homgy,, (T(gm)* ® T,gm), Tl(Lm)) ® Hom ¢, (T(n) ® 7'5(”)*, qun)).
Clearly we can choose «, 3,7, so that the above tensor product survives. Then, by

Theorem 1.5, C[OQ] is not multiplicity-free, hence @ is not spherical. O

Lemma 2.4. Let O; and O, be two nilpotent Kc-orbits, and suppose that O, is adherent
to the closure OQ,. If O, is spherical, then O is also spherical. In other words, if Oy is
not spherical, O, cannot be spherical.

Proof. Since@ CcOQyisa closed subvariety, the restriction is a Kc-equivariant surjection
ClO2] — C[04]. Thus, if C[O,] is multiplicity-free, C[O;] is multiplicity-free, which is
what we wanted to show. O

This lemma tells that the set of spherical nilpotent orbits has a hereditary property
with respect to the closure relation.

The closure relation of nilpotent Kc¢-orbits is well known and it is described most
conveniently in the language of signed Young diagrams. For this, we refer to [10].

Among the signed Young diagrams which are not listed in Theorem 2.1, the minimal
orbits with respect to the closure relation are the following form:

—T+ -+ —J+[-
e e s
T ] + + +

(@) [] (@) [ (b) () ()

[+
..|_|_

Thus it is enough to check the orbits corresponding to (a), (a’), (b), (b'), (c) are not
spherical. Since (a), (a') and (b), (b’) are treated in the similar manner, we only consider
cases (a), (b) and (c).
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Case (a). Let D be the Young diagram (a). Then Op is lifted from O, where D' =
+|—[+ O, is the largest nilpotent K{-orbit of G' = U(2,1), and its closure coincides
with the whole nilpotent variety N (s'). Therefore, by Kostant-Rallis theorem, we get

ClO, ] = CN(s')] ~ Ind (C (as K¢-module),
where K¢ = GLy x GL; and C denotes the tr1v1al representation of
M = {diag (t,s,s) | t,s € C*}.
Frobenius reciprocity law tells us that the above formula becomes
- P ®
ClO)) ] ~ Z Hom y; (TIEQ) ® WY, C) ® (TL(LQ) X (V) ~ Z ( )X T‘El)ﬂm :
MV 120> p2

where p = (p1, 2) € Z? is a dominant integral weight for GLy. This shows that @, is
spherical, and it gives an example of a spherical nilpotent orbit which is not a theta lift
in the stable range.

Now by Theorem 1.5, we obtain the decomposition

I &) @
(C[@D] = Z ( Z Hom GLyxGL, ((Tg)* ® T7(2))®(T,f5‘1) ® Tél)*)v 7_/_(L2) X Tl%)-l-m*))
a,Y€EPy  p1>0>pa
B,06P1

CRLED)
The multiplicity in the above formula can be rewritten as
®
Z Hom ¢y, (TéZ)* ® TA§2), Tf)) ® Hom ¢, (Tél), Tél) ® Tﬁ)ﬂm) (2.1)
p1>02>p2
Take integers [ > k > 1 and put « = (k,0), v = (1,0). Then, by Pieri formula, we get
2) 2) 9 (2
T erP Y T
k1+ko=k
where the summation is taken over non-negative integers ki, ko > 0 such that k = ki + k».
Therefore = (I — k1, —ko) gives a non-zero term in (2.1) if and only if § = 5+ py + s =
B+1—k Letus take = k and § = I. Thus the multiplicity of 7%, K 70, =

gioy
T((If’)o,___’o,_k) X T((;{()),___O,_l) is equal to k + 1 > 2. This shows that C[Qp] is not multiplicity-
free.

Case (b). As above, we put D' = :[:,

for G' = U(2,2). Since @), is a theta lift from the trivial orbit of U(2), we have

Cl0),)] ~ Z 7' .T

HEP2

which corresponds to the anti-holomorphic orbit
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By Theorem 1.5, we obtain

& o
5 (7 Hom s (82" © )R & 799, 2 Bf2))
a,B,7,06P2  pEP2
Q ) * g0
Taopp = Tyog0
Therefore the multiplicity becomes

®
Z Hom GLs (7_[52)7 Tg)* X T7(2)) ® Hom GL» (T;(t2)7 Tg)* ® 7_(5(2))' (2'2)

HEP2
We take integers [ > k > 1, and put « = = (k,0) and v = § = (k + [, k). Pieri formula
tells us that
* ~ —(2)x (2) ~ Y@
e Y en” = Y Tk
k1+ko=k

Thus, the above multiplicity (2.2) is equal to k +1 > 2. Hence C[Qp] is not multiplicity-
free.

+_

Case (c). We put D' =

. Then @, is a theta lift from the trivial orbit of U(1,1).

So we obtain
- D N
O, ]~ Y PR,
120> p2
and
& @
57 (3 Hom s, (2 © 10 0777, 7 7%))
a7ﬂ7776€7)2 UIZOZUZ
o (P *x @
Tatps” B Tyoys
The multiplicity becomes
Z HOHIGL2 TZ),T(gZ)(X) 7()*)®H0mGL2(TL(L),Té)®T5() ) (23)
w1>0>p
For integers [ > k > 1, we put a = = (1,0) and v = 6 = (k,0). Then, by Pieri formula,

we have

2 Nx o (2) o (D% )
ng)@’ﬁ() >Tg T ™ Z T(1—k1,~k2)"
ki1+ko=k

Thus, the multiplicity (2.3) is equal to kK + 1 > 2 for 7, ) 5" X 7'( 9 o= T((lp())’m’o’il) X

T((,Z’)O,.__’O,_k). Hence Qp is not spherical.
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Now Lemma 2.4 tells us that the nilpotent orbit @ whose closure contains the diagrams
(a) — (c) cannot be spherical. This completes the proof of Theorem 2.1.

3. CLASSIFICATION OF SPHERICAL NILPOTENT ORBITS

In §2, we have identified the spherical nilpotent orbits which are theta lifts in the
stable range. In this section, we obtain a sufficient condition for non-sphericality. As a
consequence, in the case of U(p, p) where p = ¢, we prove there is no spherical nilpotent

orbit other than lifted ones. This gives a complete classification of spherical nilpotent
orbits for G = U(p, p).

Theorem 3.1. Let O = Op be a nilpotent Kc-orbit for U(p,p). It is spherical if and
only if the shape A(D) of the signed Young diagram D is of form:

AD)=[3-2-1] e=0,1; k1>0; 3e+2k+1=2p,
and the length satisfies an inequality ¢(D) =+ k +1 > p.
As explained above, Theorem 3.1 follows from Theorem 2.1 and the following

Lemma 3.2. Let O = Op be a nilpotent Kc-orbit for U(p,q). If (D) < min{p,q}, it
is not spherical. In particular, if p = ¢, a spherical orbit O is a theta lift from certain
nilpotent K¢ -orbit @' in the stable range.

The rest of the section is devoted to the proof of the above lemma.
Let B = Bk, be a Borel subgroup of K¢. The following lemma is almost trivial.

Lemma 3.3. Let O be a nilpotent Kc-orbit. If dim© > dim B, it is not spherical.

Proof. Since O is a cone and B contains a dilation, the dimension of a B-orbit in O cannot
exceed dim B — 1. O

Take a signed Young diagram D of shape A = A\(D) with signature (p,q). We put
'XN=pu=(p1,...,u), the transposed partition of \.

Lemma 3.4. With the above notation, dim QOp > dim B, if and only if

k
2pq — (p+q) = > pi. (3.1)
i=1
Proof. 1t is well known that the dimension of the G¢-hull of Qp is given by

k
dim G¢ - Op :dimg—Zu? =2dimQp.
i=1
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For this, see [1, Cor. 6.1.4, Remark 9.5.2] for example. Since K¢ = GL, x GL,, we have
dim Bg. =p(p+1)/2+ q(g+1)/2. Thus we get

k

. : 1 plp+1)  alg+1)
dlm@D_dlmBKc:§{(p+q)2—;u?}—{ > i > }
1 k
=5{2a—+0) - ;u?},
which proves the lemma. O

Let us return to the proof of Lemma 3.2. Without loss of generality, we can assume that
1 =L4(D) < p<gq. Since pt = (1, ... , ) is a partition of p+¢, we have Zle Wi = p+q.
Therefore we have

2pq—(p+q)—Zu?Z (p—l)(p+q)—Zu?z(p—l)Zui—Zu?

k k
= milp—=1—p) >> pilp—m—1)>0.
=1 1=1

By Lemma 3.4, the above inequality assures dimQp > dim By, hence OQp cannot be
spherical. This completes the proof of Lemma 3.2.
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