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ABSTRACT. We consider a reductive dual pair (G, G’) in the stable range with G' the
smaller member and of Hermitian symmetric type. We study the theta lifting of (holo-
morphic) nilpotent Kg-orbits in relation to the theta lifting of unitary lowest weight
representations of . We determine the associated cycles of all such representations. In
particular, we prove that the multiplicity in the associated cycle i1s preserved under the
theta lifting. We also develop a theory for the lifting of covariants arising from double
fibrations by affine quotient maps.

INTRODUCTION

Let (G, G’) be a reductive dual pair in a symplectic group G = Sp(2N,R), where N
denotes the rank of G. Let G = Mp(2N,R) be the metaplectic two-fold cover of G, and
Q be a fixed oscillator representation of G ([10]). Often when no confusion should arise,
we shall not distinguish € with its Harish-Chandra module.

Let Zy = {£1} be the kernel of the prOJectlon from G to G. For a subgroup L of G,
we denote the pullback of L in G by L. Then L projects onto L with kernel Z,. We call
an irreducible admissible representation of L genuine if its restriction to Z, is a multiple
of the unique non-trivial character ¢ of Z,.

Using the oscillator representation 2, Howe associates a given irreducible admissible
genuine representation 7’ of G with an irreducible admissible genuine representation w
of é, called the theta lift of =’ ([10, 13]). We shall write # = 6(x’), as usual. Roughly
saying,  is the theta lift of #’ if and only if there is a non-trivial morphism

Q—7ro7r asa (g,f?) X (g’,f?’)—module,

where g (resp. g’) is the complexification of the Lie algebra of G (resp. (') and K (resp.
K') is a maximal compact subgroup of G' (resp. G').

Throughout this paper, we will assume that (G, G") is of type I, and it is in the stable
range with G’ the smaller member (cf. [10, 23]). According to [23], theta correspondence
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gives rise to an injection
—— o~
. !
f: G — G,

where G, (resp. é’ﬁ) denotes the set of equivalent classes of irreducible unitary genuine

representations of G (resp. é’)

We will also assume that G'/K’ is an irreducible Hermitian symmetric space. By the
classification of irreducible dual pairs, our restriction amounts to saying that (G,G") is
from the following Table 1 (cf. [13]). Note that G is the group of isometries of a non-
degenerate Hermitian form of signature (p,q) over D = R, C H, respectively, and G’ is
the group of isometries of a non-degenerate skew-Hermitian form over D. We shall thus
denote GG = G(p, ¢) and label the three cases as Case R, Case C and Case H, respectively.
Note also that we have excluded the equality 2n = min(p, ¢) in the first case, to avoid
some (small) technicalities.

TABLE 1. The dual pairs treated in this paper

the pair (G, G") stable range condition

Case R:  (O(p,q), Sp(2n,R))  2n < min(p,q)
Case C:  (U(p,q),U(m,n)) m +n < min(p, q)
Case H: (Sp(p,q),O*(2n)) n < min(p,q)

A particularly interesting subset of (. is the set of (genuine) unitary lowest weight
modules of (/. Note that this subset includes unitary characters, singular unitary lowest
weight modules and holomorphic discrete series, and there is a vast amount of literature
on the subject beginning from the fundamental work of Harish-Chandra [8, 9] and Wallach
[39]. Its classification is also well-known [6, 15]. Their theta lifts will then constitute a

collection of rather interesting singular unitary representations of G.

The purpose of this paper is to investigate this collection of singular unitary represen-
tations. We will be especially interested in geometries underlying these representations
(§2). In particular, we will show the strong interaction between their K -structures and
the geometry of the associated varieties (cf. [40, 29, 32]). In some sense our results
demonstrate that stable range theta lifting commutes with Vogan’s philosophy of orbit
method [41]. The main application here is the determination of the associated cycles of
this collection of singular unitary representations.

We remark that lifting of discrete series representations was investigated by many re-
searchers, in [38, 1, 24], etc.. Among them we mention two works which are more relevant
to our work. In [1, 2], Adams considers the theta lifting of discrete series under the stable
range condition, and shows that most of them are derived functor modules Ag(A). Thus

in principle their K-structures can be obtained via Blattner type formula. We shall not
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take this approach as it is well-known that these R’—type formulas are not very practical
(at least for our purpose). In [25], Li describes a method for computing the K-types of

O(r') for o’ € CNJ’E, which is effective when 7’ is holomorphic. We shall discuss this method
in parts of §3.

We introduce some notations. Fix a choice of the maximal compact subgroup K of &
(resp. K" of G'). This determines a Cartan decomposition of the complexified Lie algebra
g (resp. @) of G (resp. G'):

g=tds, g=tas,

where € (resp. ¥) is the complexified Lie algebra of K (resp. K'), and s (resp. s') is the
orthogonal complement of & (resp. #) with respect to the Killing form. Since we assume
that G’ is of Hermitian symmetric type, s’ breaks up into irreducible pieces s’y under the
adjoint action of K.

Let O C ¢’ be a nilpotent K-orbit. Then we can define the theta lift of @', which is
a certain nilpotent Kc-orbit @ in s ([31]; see §2.2). We shall denote O = §(Q/).

In [40], Vogan introduced the notion of associated variety/cycle for an admissible rep-
resentation 7 of a real reductive Lie group G. In general, the associated variety AV (7) is
a (finite) union of the closure of nilpotent Kg-orbits, and the associated cycle AC () is a
certain non-negative integral linear combination of the closure of such orbits. A natural
question arises: How do associated cycles behave under the theta lifting =" — = = 0(x')
and how are they related to the theta lifting of nilpotent orbits? In this paper we answer
these questions for unitary lowest weight representations #’.

To be more precise, let 7’ be a unitary lowest weight representation of G Tt is well-
known (see [29]) that AV (7') = O/l the closure of a single nilpotent K/-orbit Q/hl C
s’ , which will be called holomorphic. We may thus write AC (7') = mo[Q/P]] with
multiplicity m, € Zso. The determination of the multiplicity is actually not so easy;
it is computed in [30] explicitly. The interested reader may also find in [30] the basic
properties of associated varieties/cycles.

Let us further assume that 7' comes from the compact dual pair correspondence of
(G(k),G") for some k. Here G(k) = G(k,0) is the compact Lie group O(k), U(k), Sp(k)
for Cases R, C, H, respectively. If G’ = Sp(2n,R) or U(m,n), all unitary lowest weight
representations 7’ of ' arise in this way [5]. If G’ = O*(2n), this assumption is very minor
and it amounts to excluding a (tiny) subset of unitary lowest weight modules with their
levels of reduction all being 1. See the paper of Davidson, Enright and Stanke (§7, [4])
for a precise statement. We remark in passing that this corrects an assertion made (also
in passing) in the classification article [6]. For such a 7’ which comes from the compact
dual pair correspondence of (G(k),G"), we have QP! = QP the K/-orbit of “rank” r
in s°_. Here r = min(k,[) and [ is the real rank of G'. See for example [29], which is in
the volume [30].

Our main result is the following
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Theorem A (Theorem 4.7). Let 7’ be a unitary lowest weight representation ofé’ arising
from the compact dual pair correspondence of (G(k),G"), for some k. Assume that ©' is
genuine with respect to the dual pair (G(p,q),G"), and let # = §(x") be the theta lift of '

Write the associated cycle of ©' as

AC (7') = m [Qrhel]
with multiplicity m, € Ziso. Then the associated cycle of ® is given as
AC (1) = m[0], where 0 = o(Q™h),
Moreover we have

dim o if k <1[l:=R-rank G’,
My = . . .
dim o@F=L0  if k> 1 and G'/K' is of tube type.

Here ©' corresponds to the contragradient o* of o under the compact dual pair correspon-

dence of (G(k),G").

The multiplicity for the non-tube case is given in Theorem 4.7 as well. We remark that
for #” a holomorphic discrete series representation, the multiplicity m,» may also be given
by the dimension of its lowest R”—type. For example this will be so if £ > 2n for Case R
(k > m+n for Case C, and k > n for Case H, respectively), and so one gets an equality of

dimension of certain space of fixed vectors of o with the dimension of the lowest K'-type
of #’. In fact more is true. See Proposition 4.10 immediately after Theorem 4.7.
Consequently we have the following equality of associated cycles:

AC(0(x")) = 0(AC (x')),

and in particular the equality of associated varities: AV (6(x')) = 0(AV (7).

In a previous paper [32], we investigated the case where 7’ is a unitary character (see
also [35]) or a holomorphic discrete series with a scalar minimal R”—type. For these
representations, the multiplicity in the associated cycle is 1, and the situation is much
simpler than the present case of (almost all) unitary lowest weight representations. Apart
from this considerable generalization, it is perhaps significant that we also offer several
conceptual ideas, which we shall elaborate.

We comment on our two-fold approach to the study of AC (6(x’)). The first one is to
understand the K'-structure of f(7') in terms of that of #’. As mentioned before, this
refines the method of J.-S. Li [25], and we call it the “representation theoretic side”.
The other is to understand the algebro-geometric properties of the lifting of nilpotent
orbits and associated varieties of representations. We call it the “geometric side”. In a
sense, “geometric side” treats the commutative (or classical) objects, such as the regular
function rings of (the closure) of nilpotent orbits or coherent sheaves on them, while
the objects in the “representation theoretic side” are quantizations of these commutative
objects/structures.
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We outline the strategies of the “geometric side”. In the study of @, = (Q'2) (r =
min(k,[)), an important role is played by certain affine variety X, ,+%, which fits into an
affine quotient map ¢ : X, ,1x — O, by the action of G(k,C), the complexification of the
compact group G(k).

The idea of constructing the variety X, .41 is motivated by the work of Loke [26],
where he considers the theta lift of the trivial representation of G’ with respect to the
dual pair (G(p,q + k), G"), and restricts it to a smaller dual pair G(p,q) x G(0, k). Then
the action of the compact group G(0, k) cuts out the correspondence of representations
for the smaller dual pair. Note that lifting the trivial representation amounts to taking
“invariants” of G'. We remark that the invariant-theoretic nature of theta correspondence
was elucidated by Howe in his pioneering paper [10], in particular the idea of doubling
(or adding more) variables to get “invariants”. We also remark that the theta lift of the
trivial representation (and more generally unitary characters) was studied extentively in
the recent years, often in connection with invariant distributions and degenerate principal
series (see [20, 44, 45, 21, 22, 14]).

Our variety X, 4% is then the theta lift of the ¢rivial orbit of §' with respect to the
larger dual pair (G(p, ¢+ k), G"). We take a quotient by the action of G(k,C), which takes

the role of the compact group G(0, k) in Loke’s case, and we obtain ©, = #(Q'h°l) as a
quotient X, ;41 //G(k,C). It turns out that this line of attack is not enough to understand
the associated cycles of the family of lifted unitary representations. In addition, we need
to work on certain coherent sheaves on Q,. We thus take covariants under the action of

G(k,C):
M[U] = (U ® C[Xp7q+k]>G(k7C)’

where o is an irreducible finite dimensional rational representation of G(k, C).

To fix notations, let o be an irreducible finite dimensional rational representation of
G(k,C). We may also view o as an irreducible unitary representation of the compact
group G(k). We assume that our unitary lowest weight representation n’ corresponds
to the contragradient o* of o under the compact dual pair correspondence of (G(k),G").
This may be interpreted more explicitly as follows. Associated to the compact dual pair
(G(k),G"), there is a certain complex vector space Wy, and for our three cases it may
be identified with the space of complex matrices My, My 4, and My, respectively.
The corresponding oscillator representation (more precisely its Harish-Chandra module)

may be realized on C[W}] via the Fock model. The action of K’ differs from the standard

action of K’ C K{ on C[Wj] by a certain character xj of E;’, the exact form of which is
not important for us. We may rephrase the relationship between o and =’ as follows:

s @ Lol,  Llo] = (0@ CW,) Y., (0.1)

K —

See [16], [12].
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The modules of covariants M[o]| and L[o] may then be viewed as commutative analogues
of the representations (x’) and 7’ respectively. Thus, on the “geometric side”, we shall
need to study the relationship between the characteristic cycles of M[o] and L[o].

To do this, we define a general notion of the lifting of covariants using a double fibration
of quotient maps (§1). Assume that there is an affine variety = on which K¢ x K¢ acts.
Then we have a double fibration:

X :=EZ//K/ = =//Ke = Y.

For a K{-equivariant coherent sheaf L on Y, we define its lift by
M = (Z xy L)// K¢,

which is a K¢-equivariant coherent sheaf on X.

Suppose that there is an another affine variety Z on which a reductive algebraic group
H acts; and moreover we assume Y is isomorphic to the quotient Z//H. Then, for an
irreducible finite dimensional rational representation o of H, we can consider a module
of the covariants L[o] defined as

Lio] = (¢ @ C[Z])".

This is a finitely generated C[Y] ~ C[Z]#-module and so it defines a coherent sheaf L[o]
on Y in the standard way. On the other hand, we have a commutative diagram of quotient
maps

v o g e
lﬁH lﬁH lﬁH
K = IKe |

where V = (2 xy Z)//K{ — X is a lift of the quotient map Z — Y. Thus we can define

a coherent sheaf M[o] on X which corresponds to a C[X]-module of the covariants
M[o] = (¢ @ C[V]™.
The following theorem summarizes Theorem 1.9, Propositions 1.3 and 1.10.

Theorem B. With the above notations, ]\Aj[a] is the lift of the K{-equivariant coherent

sheaf Z[U]. Assume that a generic Ki-orbit is closed in = and the quotient map = — Y
is flat. Then the multiplicities of covariants are preserved:

rank y ]\Aj[a] = ranky L[o].

Furthermore if the general fiber of the quotient map 7 — ZJ/H =Y is a single (hence
closed) H-orbit, then this common multiplicity is equal to dim o™=, where H, is the fized
point subgroup in H of a general point z € 7.



THETA LIFTING OF LOWEST WEIGHT MODULES 7

We now specialize to the situation at hand. There exists an irreducible affine variety
= = = such that ¥V = Z//K¢ ~ O and X = Z// K} ~ Oy (see §2.4 for the precise
definition of =). Moreover W} //G(k, C) is isomorphic to @}l and so we can take Z = Wy
with the action of H = G(k,C). It turns out that V = (= xy Z)//K{. is isomorphic to
Xp.g+k, and so everything fits into our general setup nicely. In this way, we have the
lifting of covariants from L[o] to M|o], as a commutative substitute of the theta lifting
from 7’ to w. The above theorem thus guarantees the preservation of multiplicities in
this commutative picture. Our approach also yields the K¢-module structure of M[c], in
terms of K{-module structure of L[s| (Theorem 2.4).

On the “representation theoretic side”, we will show that the [?—types of §(x') can be

described by the ]/&v”—types of 7’ in more or less the same way (Theorem 3.9). We highlight
here a relevant key fact which may be of independent interest.

Theorem C (Corollary 3.6). Howe’s mazimal quotient for a unitary lowest weight module
is irreducible under our assumption of stable range.

This result was obtained by H.-Y. Loke by a different method. We also prove the
following proposition, which is used in the proof of Theorem 4.7 in an essential way.

Proposition D (Proposition 3.12). Let # = 0(x’) be the theta lift of an irreducible ad-
missible representation n'. Assume that the associated variety AV (7') of 7' is irreducible,

hence the closure of a single nilpotent Kg-orbit O'. Then the associated variety of x is
contained in the closure of the theta lift O = 0(Q).

Note that we do not even assume 7’ to be unitary. In [36, Th. (7.1)], Przebinda proved
a similar result for the associated varieties of primitive ideals. It is known that the
associated variety LAY (7) generates the associated variety AV (I;) of its primitive ideal
I, under the adojoint action of complexified group G¢ (see [40]). Thus, in the special
case where the dual pair is in the stable range and AV (7') is irreducible, our proposition
is a refinement of Przebinda’s result. See also [37, Th. 7.9].

To prove the main theorem, we compare the Poincaré series for 7 = 6(x’) and M|o].
The conclusion is that (the graded module of) 7 and M[o] have the same multiplicity
and asymptotic behavior when the grade goes toward the infinity. Since we know the
associated variety of 7 is contained in the support of M[c]| by the above proposition, we
conclude that they must have the common support O,, and the same multiplicity along
O,. We thus obtain the associated cycles of all such 7’s.

Here are the outline of contents and some words on the organization of this paper. In
§1, we review some standard results on affine quotients and introduce a general notion
of lifting of coherent sheaves and covariants in the context of double fibration (by affine
quotients). In particular we prove a result on preservation of multiplicity (Theorem 1.9),
which is of independent interest. In §2, we review the notion of the theta lifting of
nilpotent orbits [31] and investigate geometries underlying theta lifting of holomorphic
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nilpotent orbits. We lift the affine quotient map ¢’ : Wy — @’—1,:01 to an affine quotient
map ¢ : X, 06 — O and we determine the multiplicity and the Kc-module structure
of the space of covariants M[o] over Q. In §3, we develop the representation side. The
main result is the description of K -structure of the theta lift f(7') (actually the maximal
quotient) of all unitary lowest weight modules 7', in terms of the K'-structure of =,
We also prove a general result on the correspondence of associated varieties (Proposition
3.12). In §4, we investigate certain Poincaré series of §(7’), and we then apply the results
of §2 and §3 to obtain the formula for the associated cycle of §(7’). The computations of
the generic fibers of ¢ : X, .41 — O, are done in the Appendix.

Acknowledgment: Part of this work was done while the first-named author was visiting
the Institute for Mathematical Sciences (IMS), National University of Singapore in 2002.
He would like to thank IMS for its support and warm hospitality during the visit. Both
authors would like to thank the referee for his valuable comments.

1. LIFTING OF COVARIANTS VIA AFFINE QUOTIENT MAPS

1.1. Preliminaries on affine quotients. Let H be a reductive linear algebraic group
over C which acts on an affine variety X. As usual let X//H denote the affine quotient
of X by the action of H, which is by definition Spec C[X]#. Here and throughout this
article, C[X] denotes the regular function ring on X and C[X]¥ the ring of H invariants.
The natural inclusion C[X]# — C[X] then induces a projection map ¢ : X — X//H,
called an affine quotient map.

We have the following well-known

Proposition 1.1. (1) For anyy € X//H, the fiber (7' (y) of y contains a unique closed
H orbit. Hence X//H may be identified with the set of all closed H orbits in X.

(2) Let Z C X be an H-stable closed subvariety. Then its image ((Z) is closed in X//H,
and C‘Z 2 7 — ((Z) is an affine quotient map, i.e., ((Z)~ Z//H.

1.2. Module of covariants and multiplicities. Let X be an irreducible affine variety
and ¢ : X — X//H be an affine quotient map. We write [ = C[X]¥. Denote by Irr(H)
the set of equivalent classes of irreducible finite dimensional rational representations of

H. For o € Irr(H), consider
Llo] = (s 2 C[x])", (1.1)

which is a finitely generated [-module. We shall refer to L[o] as a module of covariants
over I. If we denote by F' the quotient field of I, then we have F' @; L[g] = F? for a
non-negative integer d. We call d the multiplicity of the [-module L[c], and it will be
denoted by rank; L{o].

The following lemma is standard and so we omit its proof.
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Lemma 1.2. Let ( : X — X//H be an affine quotient map. Then we have
rank; L[o] = dim(o @ C[¢™! (y)])H < 00,
where y is a general point in X//H.

We shall need the following result, which follows from the lemma above and the Frobe-
nius reciprocity.

Proposition 1.3. Let ( : X — X//H be an affine quotient map, and assume that a
generic fiber (T (y) is a closed H-orbit. Then the multiplicity of the module of covariants
Lol = (c® C[X])H over I = C[X]|7 is given by

rank; L[o] = dim o,

where v € ("' (y), and H, denotes its stabilizer.

Remark 1.4. Since the orbit H - = C X is a closed affine variety, the stabilizer H, is
necessarily reductive.

1.3. Lifting of coherent sheaves. Let K¢ and K¢ be reductive algebraic groups over
C, and suppose that K¢ x K¢ acts on an irreducible affine variety =. Let

X =Z//KL, and Y =Z//Kc (1.2)

be the corresponding affine quotients. Thus we have a double fibration map by affine

quotients:

e e (1.3)

Note that if we put R = C[Z], then we have C[X] = Rt and C[Y] = R*c.
Denote by Oy the sheaf of regular functions on Y. For a finitely generated C[Y ]-module

L, we let L=0y @qpy] L be the corresponding coherent sheaf on Y. The functor L +— L
gives an equivalence of categories between the category of finite generated C[Y ]-modules
and the category of coherent sheaves of Oy-modules on Y. Its inverse is the functor of

taking global sections. We also write ranky L = rankqyy) L.
In the following, we shall be mainly concerned with coherent sheaves which are equi-
variant with respect to some group actions. For instance, since K{. acts on Y, we may

consider a K{-equivariant coherent sheaf L. This simply means that L is a finitely gen-
erated (K{, C[Y'])-compatible module.
Definition 1.5. For a finitely generated (K{, C[Y'])-compatible module L or a K equi-

variant coherent sheaf L on Y, we put
M = (C[2] @y L)X,  or M = (2 xy L)}/ KL (1.4)

Then M is a finitely generated (K¢, C[X])-compatible module, and Misa Kc-equivariant

coherent sheaf on X. We call M a [lift of L, and M a lift of L via the double fibration
map (1.3).
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We have the following commutative diagram.

Lemma 1.6. If the quotient map = — Y s flat, then we have
ranks(Z= Xy Z) = ranky L.

Remark 1.7. In general, we only have an inequality rankz(= Xy Z) < ranky L.

Proof. We need to prove that rankqy] L = rankes) C[Z] @y L. Since C[Z] is flat over
C[Y'], the assertion is immediate. O

Lemma 1.8. Assume that a generic Kg-orbit is closed in =. Let L be a K¢-equivariant

coherent sheaf on = and Z//K(’C the corresponding (quotient) coherent sheaf on X =
=/ K{, then we have

rankX(/j//K{C) = rankz L.
Proof. Put R = C[Z], then we have REt = C[X]. We are to prove that rankp £ =

ramkRK(/C L5¢ for any finitely generated R-module £. Put d = rankz £. Then, by definition
of the multiplicity, there is an exact sequence

0— R'— L — N —0: exact,
where N is an R torsion. Since taking K{. invariants is an exact functor, we have
0— (RK(C)d — e 5 NKe 0 ¢ exact.
So it is enough to prove that N*¢ is an RXt torsion. Since N is an R torsion, Z = SuppN
(the support of N) is a proper closed subvariety in Z. Clearly we have Supp]\ﬂ“(C ~ Z//

By the assumption, there exists a closed K{-orbit in =\Z. This implies that SuppNI‘
cannot be the whole X = Z// K. Hence N%¢ is an RX¢ torsion. O

Combining the above two lemmas, we obtain the following

Theorem 1.9. Let = be an irreducible affine variety on which Ko x K¢ acts. Put X =
=//Ki and Y = Z//Ke. For a Ki-equivariant coherent sheaf L on Y, let M = (= xy
Z)//K{C be the lifted sheaf, which is a Kc-equivariant coherent sheaf on X. Suppose that a
generic K-orbit is closed in = and the quotient map = — Y is flat, then the multiplicity
is preserved by the lifting:

rank y M = ranky L. (1.5)
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1.4. Lifting of covariants. We keep the setting and notations of the previous subsection.
Thus we have an irreducible affine variety = on which K¢ x K acts, and X = Z// K.,
=//Kc.

Now suppose that H is a reductive algebraic group over C, and suppose that there is
an irreducible affine variety Z on which H x K{. acts. We further assume that Z//H ~ Y
as a K{-variety. We will define the lift of the quotient map Z — Y as follows.

Let V = (2 xy Z)//K{. Note that since we consider = Xy Z in the scheme theoretic
sense, it may not be irreducible or reduced. The same remark applies to V. We have the
following commutative diagram:

v /K¢ — wy 7 MEe, /1 Ke 7
l//H l//H l//H

This is clear if we show that the map V' — X is an affine quotient map. To see this, we
compute

!

CV]™ = (CE] @qy) 2] = (C[2] @qr) C[2]7)Re.
Since C[Y'] ~ C[Z]¥ by assumption, we get C[V]¥ = C[Z]¥t = C[X], which is equivalent
to saying that V' — X is an affine quotient map. We shall thus say that the quotient map
V — X is lifted from the quotient map Z — Y.
For o € Irr(H), we put
Lol = (cocz)”, Mol=(cacy])"
They are finitely generated modules of C[Z]" ~ C[Y'] and C[V]¥ = C[X], respectively.

Let L[o] be the associated K{-equivariant coherent sheaf on Y, and M|[o] the associated
Kc-equivariant coherent sheaf on X, as before. Then we have

Proposition 1.10. M[O‘] is lifted from Z[O‘] in the sense of Definition 1.5.
Proof. We put S = C[ ]. Note that C[Y'] ~ SH by assumption. We have

= (coqy > = (0 ® (C2] 9oy Q2)")"
~ (0 ® (CE] @ 5))" " = (CE] @9 (0 © 9)) "
~ (C[Z] @ (0@ 5)7)"E = (CIE] @5 L[0])"E.
The assertion follows. O

2. GEOMETRY OF THETA LIFTING

2.1. Review of structures for dual pairs. We review certain structural results related
to our dual pairs [13].
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Let Wg ~ R?M be a real symplectic space which realizes G = Sp(2N,R) as a symplectic
group on Wg. There is a canonical complex structure on Wr and we can view Wy as (the
underlying real vector space of ) a complex vector space W ~ CV. The symplectic form on
Wr is then given by the imaginary part of a canonical positive definite Hermitian form on
W. By this identification, a maximal compact subgroup K of G is realized as the unitary
group U(W) ~ U(N) on W = CV.

We may choose maximal compact subgroups K and K’ of G and G’ respectively, in such
a way that K - K’ is contained in the standard maximal compact subgroup K ~ U(N) of
G.

In view of Table 1 of the Introduction, we sometimes write G = G(p, ¢), namely G(p, ¢)
will denote one of the groups O(p, q),U(p, q) or Sp(p,q). Note that G(k,0) ~ G(0,k) is
compact. We shall write G(k) = G(k,0) in short, if there is no possibility of misunder-
standing. In the sequel, we are mainly concerned with non-compact cases, though results
on compact cases will be used heavily. This is a basic technique in the theory of dual
pairs.

From the pair (G, G’), one defines another three dual pairs, which form so-called di-
amond dual pairs (see [13, §5]). Namely, take the commutant of K in G and denote
it by M'. The pair (K, M’) is a compact dual pair, and M’ is of Hermitian symmetric
type and for the cases we are concerned it is isomorphic to G’ x G’ containing G’ as the
diagonal. Also, take the full commutant of K in K, and denote it by L’. Then L’ is a
maximal compact subgroup of M’, and it is isomorphic to K’ x K’ and contains K’ as a
diagonal subgroup. Similarly, define M as the full commutant of K’ in G, and L the full
commutant in K.

Let us summarize the somewhat complicated situation by the following diagram (Fig. 1).

An explicit description of the diamond pairs for our three cases is given in [13, (5.3)].
In the table there, L (resp. L') in our notation is written as MY (resp. M'(Y),
For convenience of readers, we reproduce the table here (Table 2 below) with additional
remarks.

TABLE 2. Three diamond dual pairs.

(G, G") M K=FKtxK- L=1I%xIL- K’
(O(p,q), Sp(2n,R)) U(p,q) O(p)xO(q) U(p)xUl(q) U(n)
(U(p,q),U(r,s)))  Ulp,9)xU(p,q)  Ulp)xUl(q)  (Up)xU(p))x(U(g)xU(q)) U(r)xU(s)
(Sp(p,q), 0" (2n)) U(2p,2q) Sp(p)xSp(q) U(2p)xU(2q) U(n)

M=G¢xG", L'=K xK'
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FIGURE 1. The diagram of a diamond pair.

K’
/ \ / A
L=LTxL" G — ¢ L'=K' x K'
K=Ktx K~ =G x G

Recall G = Sp(Wg) and the complex vector space W ~ CV which is identical to W as
a real vector space. Then there exist a direct sum decomposition Wi = Wi & W5 and
correspondingly W = W@ W=, which are compatible with direct product decompositions
L =Lt x L and K = Kt x K~ in the following way. The subgroups L* and K*
contained in the unitary group U(W%). Moreover the pairs (K*,G’) and (L%, K') are
dual pairs in Sp(WF). Note that L* D K* is a symmetric pair.

2.2. Lifting of nilpotent orbits. Let us consider the dual pair (G, G') C G = Sp(2N,R).
Recall the lifting of nilpotent orbits defined in [31] (see also [28], [33, 34], [3]):

G/ — G = G(p7Q)7

s >0 — 0O Cs,

where we assume the stable range condition. To be more specific, we have certain double
fibration map

74
RN
5 s

where W ~ CV is as in §2.1, ¢ and @ are the so-called moment maps. For an explicit
description of W and the moment maps for the cases we are concerned, see the Appendix.
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In [31], for a nilpotent K{-orbit @ in &', it is shown that the push down of the inverse
image ¢ (1 ")) is equal to the closure of a nilpotent Kc-orbit O in 5. We often write this
correspondence as O = #(Q'), and call O the theta lift of O/. Here Z = op"H(QV) = W xo O/
is the scheme theoretic fiber, and ¢ : = — O is an affine quotient map by the action of
K¢:

0=90(0)~=Z//K. (2.1)

See [31].

Since we shall fix G’ and vary G = G(p, q), we often use the subscript p, ¢ to indicate
the dependence of the situation on (p,¢). Thus we write W =W, , = W, s W, ¢ =, ,,
s =5,, as well as Wy = Wy o (for these notations, see Appendix). We also write ¢, , =
(¢:F,¢;) according to the vector space decomposition W, , = W, & W,. Note that we
may sometimes write W, , = W, x W, as algebraic varieties. Similar notations will be
used freely.

Since G'/K' is a Hermitian symmetric space, s’ breaks up into irreducible pieces sy
under the action of K. Consider the orbit decomposition of s° by the adjoint action of
K¢. Any Ki-orbit in s” is clearly nilpotent. We call these nilpotent orbits holomorphic.
It is well known that s’ is a prehomogeneous vector space, and there exists a numbering
of Kh-orbits @), @, ..., Q] in such away that @/_, € O} for 1 <i < [. Here [ is the real
rank of (', and in the cases we are concerned, | = n,min{m,n},[3], respectively. As a
consequence, O = {0} and @j = &', i.e., @] is the open dense orbit in s’_. The orbit Q)
is called regular, while the orbits {Q) }o<i<: are called singular.

In the sequel, we shall be mainly concerned with theta lifting of a holomorphic nilpotent

orbit @'l Thus for Oy = 0(Q'E°), we have
Op =ty (O /KL = {0 x ()" H O}/ KL, (2.2)
where 9Nt is the null cone defined by 9F = (¥.)71(0).

2.3. Lifting of affine quotient map. Let us take a holomorphic nilpotent orbit Q/he!
(of “rank” k) in s’_, where 0 < k < [, and consider its lift Q) = 9(Q'h).
Denote G(k,C) = G(k)c the complexification of the compact group G(k). Note that

Ko = K x Kg ~ G(p,C) x G(q,C) in this notation. It is known that @’} is an affine
quotient of Wy by G(k,C):

Qrbel (0< k<),
Wi/ G(k,C) ~

Qrpel (k> 1).

This is a consequence of the classical invariant theory [42], and we refer the reader to [29]
for details. Let ¢’ : W), — @'l be the quotient map. Our aim is to lift the quotient map
(' to a quotient map ¢ : X, ;45 — Of. We shall specify the variety X, 41 later.
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Let us consider the lifting of the trivial orbit
(;/___>(;(p7q +'k)7

s OO0 ={0} — 00" =0" Cs=s5,44%

Here we only assume that & > 0 (in addition to the usual stable range condition for the
original dual pair (G(p, q),G")). We put

Xpork =0 Cs5=5,,41, (2.3)

the closure of the G(p, C) x G(¢+ k, C)-orbit lifted from the trivial one. The consideration
for the variety X, ,4x was motivated by some results of H.-Y. Loke [26], as explained in
the Introduction.

To describe the variety X, ;4 more explicitly, define the null cone by

Np gtk = p_,;—l—k(o) = m;_ X m(;_+k C Whgtks (2'4)
where N, = (;/);M)_l(()). By definition, X, .4k is the image of the null cone M, ;11 by
the map ¢, which is an affine quotient map by the action of K:

Xpatr = Mpgr// K. (25)
Proposition 2.1. We have
Ox (0< k<),
Xpg4r// Gk, C) =~
7 (k > l)

The quotient map
C: Xpgor(C Spgrn) — O, Cs,y (r = min{k,[})

is given by proj|x where proj : S, g4k = Spqg O Spk — 5,4 i the projection map.

p,qtk’

To prove this, we observe the following

Lemma 2.2.

mq_-l—k ~ Wq Xl Wg.
Proof. Clearly (B,C) € M, C W, x Wy ifand only if ¢, (B,C) = ¢, (B)+¢; (C) =0,
or 7 (B) = —; (C). Namely the following diagram commutes (note the (—1) twist for
the vertical map Wy — s” ):

(B,C) €M, C Wy x W), — W, C

pnl <—1>~¢;l

BeWw, i 8597 (B) = —v5(C)
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This proves that 91, ~ W, xg W) in the set theorefic sense. It is also easy to see that
they are in fact isomorphic in the category of algebraic varieties. O
Proof of Proposition 2.1. By definition, we have
Xpgt+k = mp,q-l—k//KZC
~ (N x (W, xg W)} //Ki  (by the above lemma); (2.6)
therefore, if 0 < k <[,
Xpgrr//G(k,C) = {m;_ x <Wq X (Wi//G(k,C) )}//[
~ (N x (W, xo O}/ KL
~ {0 x (¥ ) THO /K = vy (O) /| K = O

The case k > [ can be treated similarly.
Take (A, B,C) € My g0k C W, 44k. Then the quotient map

Mgtk = Mpgrr [/ Ko = Xpgin
is given by ¢, .4x. On the other hand, the quotient map

Wp,q-l—k 0 gnzmz-l—k - mp,q-l—k//G(ka C) - m;_ X (¢;)—1(@/l£01) = ¢;;(@/11301) C Wp,q
agrees with the restriction of the projection map W, .4 — W, ,. Thus the quotient map

DR — o H QPN )/ KL ~ O, is given by p,,(A, B). We summarize this situation
by the following diagram.

K Iz
@pq+k(ABC)Equ+k S (ABC)E%pq_Hg & Wr s C
//6(E©) l //G(k0) l /G (kC) l
_ K!
oA, B eD:  EE (apyes, LS @ s po(B) = —ui(C)

Here Zp = ;) (Q2!).  Accordingly, the quotient map ¢ : X, 4p — Oy is just the
restriction of the projection proj. O

2.4. Covariants over a lifted nilpotent orbit. We consider the module of H =
G/(k,C) covariants associated to the affine quotient map ¢ : X, 41 — O.

Put Z == = ¢, (OF), and Z = W;. We are in the setting of §1.4. In the notation
there, we have X = Z// K} ~ O, and Y = =// K¢ ~ Q' Furthermore Z//H ~ Y as a
K¢ variety. Note that

V =(Z xy Z)// KL {( (W, xa OF) Xgma Wk}//Ké:

{ (W, xo W) }//[ Npgrr// K (0 (2.6))

p,q+k-
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For an irreducible finite dimensional representation o of H = G(k,C), let Lo] =
(c® C[WkDG(k’Q and M[o] = (c®@ C[Xp7q+k]>G(k’C) be the spaces of covariants. They are
finitely generated modules over C[O"2!] and C[Oy], respectively. Let L[o] (resp. M[o])
be the associated coherent sheave on @/t (resp. 0r). We know that the coherent sheaf

M[o] on @ is lifted from L[o] on @' in the sense of Definition 1.5. See Proposition
1.10.

Theorem 2.3. (a) If k < [ (the real rank of G'), or if k > 1 and G'|K' is of tube type
(namely Case R, Case C with m = n and Case H with n even), then the generic fiber of
the quotient map

( Xpgrk — T (r = min{k, 1)
is a single closed Gk, C)-orbit with a stabilizer St = {1} in the first case and St ~ G(k —
[,C) in the second case. Consequently for an irreducible finite dimensional representation
o of G(k,C), the multiplicity of the space of covariants M[o] = <0‘ ® C[Xp7q+k]>G(k’© is
given by

dimo (0< k<D,

ke Mo] = 2.7
rankegg,y Mo} {dimgw—h@) (k> 1 and G'/K' is of tube lype). (27)

(b) For the dual pair (U(p,q),U(m,n)) (m # n), we have
rankegy M(0) = dim(o @ CMy_pm—n)) """, (k2 m > n),
and for the dual pair (Sp(p,q),0%(2n)) (n odd), we have
rankemy M(o) = dim (o @ CC2FO))FEEDD o S = 204 1),

Proof. (a) The proof (or the computation) for the part on the generic fiber of { will be
carried out in the Appendix. The formula for the multiplicity rank g M]o] follows from
Proposition 1.3, and Corollaries 5.1, 5.6, 5.11.

(b) We shall only prove the (U(p,q),U(m,n)) case. The other case is entirely similar.
It k>m>n, Lemma 1.2 tells us

rank 4 M(o) = dim(o @ C[¢™1((S, 7)) ",

where (T((.5,T)) is the generic fiber as in Corollary 5.6. On the other hand, by Corollary
5.6 and Frobenius reciprocity, we have an isomorphism

GLy

(0@ (S, TY)™ ~ (0 ® ClGLx*ar,_, My— o))
~ (0@ C[My—pmn]) 5.

GLy

This proves the desired multiplicity formula. O
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2.5. K¢-structures and gradings. We consider the K¢-module structures of the co-
variants M[o]. First we will need some notations.

Let H* = H(KZ) denote the space of harmonic polynomials on W#* (under the action
of KE). Put

Irr(Kps HY) = {7 € Ire(K¢) | Homg (7, HT) # 0}
and

Irr( K HY) = {o € Irr(KY) | Hom,+ (o, HY) £ 0}.

The space H(KZ) is multiplicity-free as a representation of K& x K[. Furthermore the
decomposition

H(Kg)‘Kg ocX T (2.8)

>
~
xKg ™ UEIrr(I(g sHY) relr(KsHT)

determines a one-to-one correspondence between o € Irr(KX; HT) and 7 € Irr(Kj; HT)
(see [12]). Similar notations and statements apply for H~ = H(Kz).

We shall abbreviate RE(K[) = Irr(KL; HE) in the following. Under the assumption of
stable range, one can explicitly check that 7 € RT(K{) if and only if 7 € R~ (K{), where
7* denotes the contragredient representation of 7 € Irr(K’). So we put

R(KL) = RH(KL) = R (KL). (2.9)
To summarize, for each 7 € R*(K}), there is a unique o € Irr(KZ) such that
HOIHK(Ci xIx"(’C(U X7, H([((:Jt)) # 0.

We denote this o by o%(7), specifying the dependency of 7 and the sign &. Then, we can
rewrite (2.8) as
HED) ~ Y ot ()R, and HEKD) =~ Y o (r)BT. (2.10)

TER(K{) TER(K()

Theorem 2.4. There is a compatible action of K¢ on M[c], and it decomposes as a
Kc = K& x Kz -module as follows:

Mo ~ ZGB HomK(/C <Ta ® Tg, L[O‘]) ® <0‘+(T;:) X 0'_(7'5)>, (2.11)
Ta,TsER(K()

where Lio] = (o0 @ C[WkDG(k’Q, which is a K{-module.
Proof. Note that there is a K¢ x G(k, C)-equivariant isomorphism
Xpgrre = AN x (W, xo Wi) }// K¢ (see (2.6)).
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Thus, the covariants [U] is isomorphic to

= (0© CXppes]) “¢O
(a®<cm+ (W, xo W,)])“HOEE
~ {CIF] @ (CIW,] @iper ) (0 © CIW])E0) 6
~ (Hyq ® L[o])", (2.12)

where H,, , ~ H(K{)XH(K7) denotes the space of K¢ = K& x Kz -harmonic polynomials
on W =W, ,. Note that we have used the isomorphisms C[OF] ~ H(KF) and C[W,] ~

H(K;) @ Cls"] (using the stable range condition). Since

@
Hog ~HIKOBH(KZ) ~ 3, (M) Be () B(momn),  (213)
Ta,TsER(K()
we get the desired formula by inserting (2.13) into (2.12). O

Let us discuss certain natural grading on L[o] and its lifted module M[o]. Put

Llo]; = (0 © CQWilaeya) 7 (720), (2.14)
where d(0*) = deg 0* is the degree of 0, which is defined to be the lowest possible degree
in C[W}] in which o* appears. This makes L]o] into a C[(()W—}:Ol]—graded module. Note that
(C[(OW—I;OI] naturally inherits a structure of graded algebra because Q'1°! is a closed cone in
s'. The same remark applies to C[Oy], C[9t¥] and CN]. Note also that the degree of
(ot (r2)® o (75)) W (72 @ 75) in H,yq is || + |B], where |a| (resp. |3]) denotes the degree
of 77 (resp. 73), defined similarly.

Corollary 2.5. We may assign a (natural) grading on the lifted module M[o] by

Moy = Z®<(Hp,q)d(0*)+2i @ Llo];)"

d=i+j

52
= Z I’IOIH[((/C <Ta ® TE? L[U]d+%(d(0*)—|a|—|ﬁ|)> ® <0‘+(T;:) & 0'_(7'5)> (d Z 0)

Ta,TgER(K()
With respect to this grading, M|o)] is a C[Qy]-graded module.
Thus we obtain the Poincaré series of M[o] as
P(M[o);t) = Zdzo dim M[o], - t*
— —de7)/2 Z Z dim HomK(/C <Ta ® Tg, L[O‘]j) X
520 7o, 75ER(KL)

dim 0'+(T;:) dimo™(73) - i+ 3(al+18D), (2.15)
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3. THETA LIFTING ASSOCIATED TO THE DUAL PAIR (G, G)

3.1. Howe’s maximal quotient. Let (G,G') C G = Sp(2N,R) be a reductive dual
pair, and Q be a fixed oscillator representation of @, the metaplectic cover of G.

Let us denote by Irr(g’, K’ ) the infinitesimal equivalence classes of irreducible admissible
(¢, K "Y-modules, and R(g’, K ;1) the subset of those in Irr(g/, K’ ) which can be realized as
quotients by (g, K ")-invariant subspaces of Q. According to [13], for each 7" € R(g/, K'; ;)
there exists a quasi-simple admissible (g’ ,[& )-module Q(7’) of finite length satisfying

Q/N ~Q(r") @, (3.1)

where
N = ﬂ kerop, H = Hom(g,f(,)(ﬂ,ﬂ).
weH
Furthermore Q(7’) has a unique irreducible quotient, denoted by (#’). The representa-
tion Q(7') is called Howe’s mazimal quotient of #’, and #(x’) (or sometimes written as
Oci—c(7')) the theta lift of ='.
Denote by

H:[:]j;,:Hom (Q,7)

(g’j{r’) K-finite’

the subspace of K finite vectors of . The following lemma is elementary.
Lemma 3.1. Let p = Q(x') be the maximal quotient. Then we have
H~p" (R’-ﬁm’te dual).

Let (G,G") C Sp(2N,R) be one of the three dual pairs specified in the Introduction.
For the moment we do not assume the stable range condition.

Recall that the maximal compact subgroup K’ determines a Cartan decomposition
of the complexified Lie algebra g’ of G’ : g’ = ¥ § s'. Under the action of K’ (via the
restriction of the adjoint representation), s’ breaks up into irreducible pieces s’.. Through
the covering map, K’ naturally acts on s’ and s'.

Recall also that an irreducible unitary representation ' of (' is called a lowest weight
representation (or holomorphic) if there exist non-zero K'-finite vectors v in the space of
7’ such that #’(s’_)(v) = 0. Then the space of such vectors v is irreducible under K'. This
is the (unique) minimal [/&v”—type of 7/, and it determines the representation =’ completely.

Let A(R”) denote the set of dominant integral weights for K'. For \ € A([f&v”) let 75'(X)
denote the irreducible finite dimensional representation of K’ with highest Welght A, and
L(A) the unitary lowest weight representation of G with the minimal K’ type 75 (). We
note that if L()) is a holomorphic discrete series representation, then we have

LN =N @ 8(y) =~ (V) @ Cls -],
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where S(V') denotes the symmetric algebra generated by a vector space V. We caution the
reader that this is certainly not true for a singular unitary lowest weight representation.
We recall notations from §2.1. For a natural number &, we consider the compact dual

pair (G(k),G"). Let Qy be the associated oscillator Harish-Chandra module. We have the
(discrete) dual pair decomposition

Ulgpee > > oNELO), (3.2)
AEAL(K')
where
As(K') = {X € A(K)|L(N) € R(g, K'; Q)1
We note that in our notation, the highest weight of o4(A) € Irr((f?(\iﬂ/)) is not A\. The
above decomposition (the description of the set Ak([?’) and the explicit correspondence

or(A) < L(X\)) is well-known, and is given in [16] for the pairs (O(k), Sp(2n,R)) and
(U(k),U(m,n)). See [6] for the pair (Sp(k), O*(2n)).

We have the compact dual pairs (K*,G") in the symplectic group Sp(Wg). Note that
K* ~ G(p,0), K~ ~ G(0,q). Let Q% be the associated oscillator Harish-Chandra module
of the metaplectic group Mp(Wg). Writing

o (1) = op(p), fe Ap([?/)’
=), e AR

ﬂ+(

we have .
7+
Ve = D, oF () B L) (3.3)
n€Ap(K’)
and .
Ol o Y. o (v EL@) (3.4)
vehy(K')

Remark 3.2. Assume that (G(p, ¢),G’) is in the stable range with G’ the smaller member.
Then for u € Ap([/&v”) (resp. v € Aq([?’)), L(p) (resp. L(v)) is a genuine holomorphic
discrete series representation. This is also the reason that we have excluded the case
(O(p,q), Sp(2n,R)), where 2n = min(p, q). See Table 1. The sets Ap([/&v”) and Aq([?’) are

almost equal under the stable range condition (apart from some translation).
The following proposition is also elementary.
Proposition 3.3. For ' € R(g’,j&v”; ), we have the j&v’-type decomposition
® . * Kt * K=
H|z~ Y dimHomy, g (L(p) @ L(v)™,7") (o™ (n) B o™ ().

n€Ap(K’)
vEAG(K')
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Consequently we have

Q(TF/)‘R ~ ZGB dimHomg,ﬁ,(L(u) @ L(v)", F/)(Uf(-l-(lu) X o (v)").

HEAR(K')
veA (K')
Proof. We consider the see-saw pair ([19, 11]; cf. §2.1):
G M =G x G
U U
K=K"x K~ G’

By the functoriality of the oscillator representation, we have
Q~Qt @0

as K x M’-modules. Thus as K x (¢, E;’)—modules, we have

ax (Y M wELw) o (Y W) B L))

n€Ap(K’) vEAL(K')
® K K= * *
~ 3 (N () B (0)) B (Lip) © L))
HEA,(K')
vehy(K')
Since H = Hom(g, fg,)(ﬂ, T') #inicer the first assertions follows. The second assertion then
follows from the isomorphism Q(7')* ~ H. O

Remark 3.4. In [32], an incorrect version of the above Proposition was given (Proposition

4.3). But it does affect the results there as long as one changes some relevant [/&v'—types
into their duals.

3.2. Abstract K-type formula. We now assume that the dual pair (G,G") is in the
stable range with G’ the smaller member. In [32], we consider the theta lift 7 = 6(x’) for
a holomorphic discrete series representation 7/, in particular we give the R’—type formula
of 7. The result in [32] is stated only for the pair (G, G") = (U(n,n),U(p,q)), however,
the other cases can be treated by similar explicit calculations. N

Here we pursue in a more sophisticated way to give a unified formula for K-type de-
composition of # = O(x') for any unitary lowest weight representation #x’. This unified
description enables us to compare them with certain covariants over the associated variety
of m. For this, we will need to recall Li’s construction of the theta lift in the stable range
[23].

We fix a genuine irreducible unitary representation ¢ of G Let S (resp. V¢) be the
space of smooth vectors of © (resp. ). Consider the G x G'-module § @ Ve where G acts

on the first factor, and G’ acts by Q ® £, which is in fact a representation of G’. The
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unitary structures on § and V; give rise to an inner product (,) on § @ V¢. Define a
sesquilinear form (, ) on & @ V¢ by

(B, D), = //(CD,(Q @ &)(h)®")dh.

Under the stable range condition, the above integral converges absolutely and further
it defines a non-negative G-invariant Hermitian form (see [23] for details). Let R be the
radical of this form. By introducing an intertwining map to certain induced representation
and making use of Mackey’s Theorem, Li shows that the resulting representation on the
quotient space (§ @ V¢)/R is in fact irreducible as a representation of @, where @ is a
subgroup of certain maximal parabolic subgroup of G. The representation of G on the
space (S @ V¢)/R realizes 0(£*), the theta lift of the contragredient of £.

The following proposition is essentially proved by Li [25]. We reproduce his argument
below.

Proposition 3.5. Let (G,G') be a reductive dual pair in the stable range with G’ the
smaller member. Suppose

I: 7 is a genuine unitary lowest weight representation of é’, or
I: 7' = &, the contragredient of a genuine unitary lowest weight representation €,

then we have the K-type decomposition
5@ we, (R dim Homg, (L(¢), L(v) ® Y o* () R v (v)*), Case ]
7T/)‘ o~ 691/€A (I ) . -
K > pen, (R dim Homg, (L(p) @ &, L(v)) (o™ () Ko™ (v)*), Case II.
)

vEA (Ix'

!

V‘

Here in Case I, HomG,( (1), L(v)@7") denotes the space of unitary G -intertwining maps
from L(p) to L(v) @ 7', and a similar notation in Case II.

Proof. We shall only give the proof for Case I. Case II is similar.

Denote ¢ = (7')*. Let 7 be an irreducible (unitary) representation of K. Ifrisa
[?’—type of §(7') then there will be @, ¢" € S @ V; transforming according to 7 such that
(®,9"), # 0. Write 7 = 74 W 7_, where 7, and 7_ are representations of K+ and K-
respectively. We have a decomposition § = S, ® S_, where §; and §_ are the spaces of
smooth vectors of the oscillator representations Q% and Q™ respectively. Without loss of
generality we may assume ® = ¢, @ ¢_ @ v, where ¢4 € Sy, o_ € S_, v € V. Similarly
write ' = ¢ @ ¢” @ v’. Let 7 (resp. (77)*) be the theta lift of 7, (resp. 7_) to .
Both 7} and 7’ are holomorphic discrete series of . Under G’ the vectors ¢, ¢/, will
transform according to 7{ and ¢_, ¢_ will transform according to (77)*. With these
notations we have

(©,0)c = [ (@ (B)os, )0 ()b, 0 )(E(R)o, ')
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Note the first factor in the integrand is a matrix coefficient of 7} while the product of
the last two is a matrix coefficient of the representation (7 )* @ ¢ = (7! @ 7')*. Since 7’
is a holomorphic representation, the tensor product 7/ @ 7’ is a direct sum of irreducible
holomorphic discrete series. It therefore follows from Mackey’s version of the Schur’s
Lemma that the integral is not identically zero if and only if 7} is an irreducible summand
of 7/ ® #x’. To summarize, this condition is necessary and sufficient for 7 to be a [?’—type
of 8(x"). Up to this point, everything is in [25].

Now assume that 7 appears in 6(x’). Thus m = dimHomg (7} ,7. @ 7') is a positive
integer and m7’_/|_ is a direct summand of 7 @ #’. Observe that the space S @ V; =
St @S- @ Ve contains the following direct summand

(erm)e(E)yer)ol=7 (e () ®f)

as a K x G'-module. We now apply the reasoning in the previous paragraph and take
matrix coefficients of the various copies of (71)* in (m7})* C (7.)* ®¢{ = (72 @ 7')*, and
we then conclude that 7 appears in (') at least m = dim Homg, (7}, 7/ ® 7') times.

On the other hand, we know from Proposition 3.3 that the multiplicity of 7 in Q(x')
is equal to dimHomg,J},(T_’I_ @ (r2)*,7'). Since 7_ @ 7’ is a direct sum of irreducible
holomorphic discrete series representations, we have

Homg,ﬁ,(T_’I_ @ (L), 7)) = Homg,ﬁ,(T_'I_, @)= Homé,(T_'I_, @ r').

See [32], Corollary 4.5 for the first equality.
We thus conclude that 7 = 7. ®7_ will appear in 0(7’) exactly dim Homg, (71,7 @ 7')

times. We note that in our previous notations, 74 = ¢% (i), 7. = ¢ (v)*, and T, =
L(p), 7° = L(v). Everything follows. O

We learned the following result first from H-Y. Loke [26].

Corollary 3.6. Let (G, G") be a reductive dual pair in the stable range with G’ the smaller

member. Suppose thalt © is a genuine unitary lowest weight representation of ' (or
contragredient of such a representation), then its mazimal quotient Q(7') is irreducible,

i.e., Q') =0(x').

Remark 3.7. Loke considers 7’ which comes from the compact dual pair correspondence
of (G(k),G") for some k. He obtained the above result by examining the relationship of
Q(7’) with the maximal quotient of a character of G with respect to the larger dual pair
(G(p,q+ k),G") (cf. §2.3), and by using the result that the latter is irreducible [45] and
unitary [23].

Following [32], we give a result on tensor product of a holomorphic discrete series
representation with a unitary lowest weight representation.
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We introduce one notation, which is not standard. For any finite dimensional unitary
representation v of K’ with the decomposition

Ao~ Z n(A)r’
define L(y) = >\ n(A)L(A).

Proposition 3.8. Let L(u) (resp. ) be a holomorphic discrete series representation (resp.
a unitary lowest weight representation) of ' Suppose that ¢ has the following K’ -type

decomposition:
f‘j{'l ~ Z m(T)T7

TEIrr(IZ")
where m(1) is the multiplicity of 7. Then

Lip) @&~ Y m(r)L(r"(p) @ 7). (3.5)

TEIrr(IZ")

Proof. Since L(y) is a holomorphic discrete series with the minimal K'-type 75 (1), and ¢

is a unitary lowest weight representation, we see that for any K’-type 7 of &, L(7%' ()@ 1)
is a direct sum of holomorphic discrete series representation. Thus we have

‘Ix ()®S( )

and ) )
L™ (1) @ 7)| g = (75 () @ 7) @ S(5'4).

Therefore the left and right hand side of (3.5) are isomorphic as K’-modules.

On the other hand, L(x) @ £ is the direct sum of holomorphic discrete representations
of G’ and each K’ -type occurs with finite multiplicity. General theory for holomorphic
representations tells us that their G'-module decompositions (in the Grothendieck group)
are determined by the weight space decompositions with respect to the compact Cartan
subgroup T' C K’'. We thus conclude that the isomorphism of the left and right hand

side of (3.5) as K'-modules in fact induces an isomorphism as (-modules. This proves
the proposition. O

Theorem 3.9. Let (G, G") be a reductive dual pair in the stable range with G the smaller
member. Suppose

I: 7 is a genuine unitary lowest weight representation of é’, or

I: 7' = &, the contragredient of a genuine unitary lowest weight representation €,
then the [?-type formula of # = §(x') is given by

7t - P

r’)‘j;, ~ ZGB dim Homg,(Tﬂl(u) @t (v)", W"I»;,,)@ﬁ(u) X JI‘_(V)*)
n€Ap(K’)

vEAG(K')
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in Case I, and

(9(71")‘1»;, ~ ZGB dimHomI},(Tﬂl(u) ® f‘j;,,, Tf(/(l/))<0'f(+(,u) X UK_(I/)*>

neAy(K')
vehy(K')
in Case 1.
Proof. This follows from Propositions 3.5 and 3.8. O

Remark 3.10. In view of the well-known fact that a unitary lowest weight (or highest

weight) representation 7’ of G s completely determined by its [?’—structure, the above
result is not surprising. See [29]

3.3. Good filtration and associated variety. In this subsection, we discuss on the
natural filtration on lifted modules.
Let 7" € Irr(g/, K’) be in the domain of the theta lifting, namely 7’ can be realized as

quotient by a (g', K')-invariant subspace of Q. Write 7 = (7’), the theta lift of 7" which is
an irreducible representation of G = G(p, ¢)". By definition of the theta correspondence,
there is a (unique) surjective (g & ¢g’, K X K') morphism

QO—rox.

Denote the kernel by N, so that we have Q/N ~ 7 @ x’. Through Fock model, we identify
the representation space of 2 with the space of polynomials C[W]. Then there is a natural
filtration by degree on C[W]. We denote it by

S AWl B0 = NnB©) (3.6)

Then, V' = 7 @ 7’ inherits an increasing filtration

F;(V) = F;(Q)/F;(N) = Q/N = V.
For this filtration, the Lie algebra action increases the degree by two (as opposed to one).
We shall thus do some adjustment.

We adopt the following notations. For o € Irr([?) let deg o be the smallest possi-
ble degree of non-zero polynomials occurring in the o-isotypic component ¢ of C[W], and

R([& QU/N) the set of equivalent classes of irreducible representations of K which occur

in Q/N. Similar notations apply to K. According to [13], there is an integer jo (which
depend on N) with the following properties:

jo = min{dego: o € R(K,Q/N)} = min{dego’: o' € R(K',Q/N)}, (3.7)

and there is a one-to-one correspondence between those o € R([& Q/N) and o' €

R(K’ Q/N) with this minimal degree. More precisely take any o € R([& Q/N) with
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degree jo, then o occurs in Hy = H([/&v’) N H([f;”), the space of joint harmonics. Let
o’ be the R”—type which corresponds to o in Hj 7, then o’ € R([f&v", Q/N) and is of the
minimal degree jo. We fix such a pair (o, 0) of K and ]/&v”—types of minimal degree jg.
Choose a new filtration of V = 7 ® =’ by

Gi(V) = Fajeie(V) (5 20). (3.8)

Since ¢’ is contained in 7’ with multiplicity one, we have = ~ ((¢/)* @ V)j‘;/ as a (g, R’)—
module.

Lemma 3.11. The filtration of V = 7 @ 7’ induces a good filtration of = by taking
def * Kl .

Gi(m) = (o) @ G;(V))! (j =0). (3.9)

Proof. Let us denote the graded module associated with the grading G/;(7) by
@
wr= Y Tarm e = Gin) /Gy ().
>0

Since the filtration is compatible with the Lie algebra action, it is enough to verify that

S(g)grom = grm (in fact, it is sufficient to prove that gr = is finitely generated over the
symmetric algebra S(g)). R

Note that G(x) = ((¢/) @ G;(V)E = ((¢') ® Gj(VC,/))I}I, where V,/ is o’-isotypic
component of V. Now by the standard result of Howe [13],

CW]o =UmEO)H, 1,

where m(29) consists of those operators in the complexified Lie algebra me (of M) which
raise degrees (by 2), and U(m*9) is its universal enveloping algebra. Recall that M is
the full commutant of K’ in G (the ambient symplectic group). Thus we have V, =
UmPVH, . (mod N).
From [13], Fact 3 (on page 540), we have

m(270) @ m(072) — 5 @ m(072) — m(270) @ 5
Therefore we have

ar Vor = g (U(m O ) = S(g) Moo

where we identify H, ,» with its image in Q/N. Now it is easy to see
grm=((o') @ Vo) = (o)) @ S(a)Hoo)™
= 5(g)((0')" @ Ho o)™ = 5(g) gro 7.
O

Proposition 3.12. Let # = 0(x') be the theta lift of ©'. Assume that the associated
variety AV (7') of 7' is irreducible, hence the closure of a single nilpotent Ki-orbit QY.
Then the associated variety of © is contained in the closure of the theta lift O = 6(Q)).
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Remark 3.13. Note that in the above proposition, we do not need the assumption that =’
is a unitary lowest weight module, or even 7’ to be unitary. We remark that Przebinda
has proved a similar result about correspondence of complex associated varieties for 7’
unitary. See Theorem (7.1) in [36].

Proof. Put I' = \/Ann gr’ = I(¥), and I = I(Q), where I(X) denotes the ideal of regular
functions which vanish on X. We shall prove that I(LAV(x)) D I. For this purpose, it is
enough to show that f(z) € I implies that f(z) € /Anngr .

Let us recall the moment maps ¢ and ¢ (cf. §2.2). Then

flz) el < f(e(w))eT (z €s5,we W),

where T = I(¢p"HQ)) = C[W] - ¢*(I') is an ideal generated by *(I') in C[W]. Thus,
there exist h; € C[W] and ¢; € I’ such that

flp(w)) = w*(f)@v)==j£:iu(w)¢*Q%)@v)

For V = Q/N ~ 7 @ n’, we define the filtration GG;(V') as in this section, and consider
its associated graded module gr V. Since ¢g; € I', a suitable power of ¢; annihilates gr #’.
By Lemma 3.11, we can assume that gr 7’ comes from gr V' taking o-isotypic component
(actually, the lemma is proved for 7, but the role of 7 and 7’ is symmetric there). This
means there is a sufficiently large Ny such that *(g;)No annihilates grV, for all 7. Since
the multiplication of *(g;) (on grV') is induced from the action of an element of U(g’),
it commutes with the action of g. This implies that ¢*(¢;)™ annihilates the whole space
grlU(g)V, = gr'V.

Thus, taking suitable power Ny, *(f)™ annihilates gr V. By Lemma 3.11 again, taking
o’-isotypic component, we see ¢*(f)™ € Ann grV,., which in turn means f™ € Ann grr

(we define gr 7 as in the proof of Lemma 3.11). This proves that f(z)isin /Anngrx. O

4. POINCARE SERIES AND ASSOCIATED CYCLES

4.1. Canonical decreasing filtration. Let 7’ be an admissible representation of G and
consider it as a (g’, R;’)—module. We also consider the Weil representation € as a Harish-
Chandra module. In this subsection, we discuss the relationship between K types and
the grading of 7 = #(x’) coming from the good filtration introduced in §3.3. As it turns

out, this boils down to certain canonical decreasing filtration on H = Hom( () &
o KH)\TD K
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Recall we have

H‘f{' = Hom(g,7ﬁ,,)(ﬂ, )i

[S3 = —_
~ 37 Homy o((0™ (1) B L(n) © (6" (v) B L(1)"), )
“EAP(IE/)
veAg(K')
S Homg (L) @ L)', 7) @ (0™ (u) B 0™ (1)),
“EAP(IE/)
veAg(K')

[

See §3.1 for the notations here.
The following result is already proved in §3.2, but we include the statement here as we
shall need some explicit formulas later.

Lemma 4.1. Assume that ' is the Harish-Chandra module of a unitary lowest weight
representation. For f € Hom(g, f;,)([/(,u),[/(l/) @ '), define p(f) by

p(f): L(p) @ L) — 7, @(f)(u@v7) = (0" @ 1)(f(u)), (4.1)

and ®(f) = (P, @ 1) o (f] 71,
O(f) : 7 () = L) D Liv) o 7' 225 7 F ) @ 7, (4.2)

where P, : L(v) — 7 (v) is the E;’-equivariant projection onto the lowest [?’-type % (v)
of L(v). Then ¢ and ® induce the isomorphisms:

Hom(g,f,)([/(u) @ L(v)", 7'~ Hom(g,7ﬁ,,)(lj(u), Lv)@ 7'
~ Homf;,(Tf"/(u), () o).
Put
V=Q/N~por,

where p = Q(x') is the maximal quotient. Recall that we have defined a natural ([f&v'
-stable, increasing) good filtration on p in §3.3:

K

pi = (Vigy2a @ (0')7) (d = 0),
where
o @ ¢’ : a joint harmonics of the lowest degree,
Jo = dego = dego’,
Vi = FB()/F(N) (see (36))
Since H = p*, this induces a canonical (R’ -stable) decreasing filtration {H?} on H given
b
' HY = {¢ € H | Py o @(Fiy124(2)) = 0}, (4.3)
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where P, : 7' — ¢’ is a K’-equivariant projection.

Definition 4.2. For a space V with a decreasing filtration, we say that degv > difv € V
belongs to the d-th filtered subspace.

Through the isomorphisms p(f) < f < ®(f) given in Lemma 4.1, we have the cor-
responding decreasing filtrations in appropriate spaces. We will determine the various
filtrations.

Denote by ||u|| = deg o™ (1), ||v|| = dega™ (v)*. Note that as usual, the degree of
o%* () is defined to be the lowest possible degree in (a Fock model of) QF in which

o®* () occurs, and likewise for the degree of o™ (v)*.

Lemma 4.3. Let [ € Hom(g, f;,)([/(,u),[/(l/) @ '), Then deg f > d if and only if
(1@ Po)o f(L(n)) € Lw) =t li=D=ig 0 (Vi > 0), (4.4)

where {L(w);} is the natural increasing good filtration of a holomorphic discrete series,
and {L(v)’} is the decreasing filtration determined by the natural increasing good filtration
{(L(v)*);} of an anti-holomorphic discrete series.

Proof. Let ¢ € Hom(g, RY,)<(0‘R+(/L)&L(/L))@(O‘R_(Z/)*&L(Z/)*),7T/> C H‘f{" Then deg ¢ >
d if and only if
Par o UF(0™ (1) B L) © Fi(o™ () B L) =0, (Vi ] < jo+ 20).
It in addition ¢ is of the form
u, € o (p) v, € 08 (V)
5 y h 1 ) )
w w ® (Up, ® v )7 wlhere {gp c Hom(g,j{f,)([/(ﬂ) ® L(l/)*,ﬂ-/),

this is equivalent to saying that
Forop(L(p)i @ (L(v)");) =0, ((lull+20) + (l[v]] +2) < jo + 2d). (4.5)
Note that
o™ (1) B L) = Flaeai(o™ (1) B L(p)),
o (v) B (L(v)); = Bl ()" B L(v)).
Let o = o(f) « f € Hom(g, f;,)([/(,u), L(v)®@7") be the correspondence given in Lemma
4.1. From (4.5), we see that deg f > d if and only if

(16 Pu)o f(L{n)) € L) &, (1.6)

for any ¢, satisfying j < d + 3(jo — ||¢|| — [|v||) — ¢. Since the filtration {L(v)’} is
decreasing, the inclusion in (4.6) is equivalent to

(1@ Py)o f(L{p)) C L(V)d+;—(jo—llull—llvll)—i @ o’ (Vi > 0).
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Finally, let f < ® = ®(f) be the second isomorphic correspondence in Lemma 4.1. We
want to determine the degree of @ (in the decreasing filtration). Recall that

Hom(g,f,)([/(u), L(v)®x') EHOIHRY,(TR/(IM), Tf(/(l/) @ ')
W W
/ o ®

Lemma 4.4. deg® > d if and only if
o(r% (1)) C X (1) @ (7T/)cl+;—(J'o—IIMII—IIVII)7

where {(7')'} is the decreasing filtration determined by the natural (increasing) good fil-
tration of the unitary highest weight module (7')*.

Proof. By applying the Lie algebra action of s’, we see that the inclusion in (4.4) is in
fact equivalent to

(1@ Py)o f(r¥'(n)) C L(V)d—l-;—(jo—llull—lllfll) Qo (4.7)
We claim that the containment
(1® Por)o f(r¥ (1)) C L(v) @ o'
holds if and only if
(P, @1) o f(r¥(n)) C 7¥(v) @ (')
To see this, we note that the first containment implies a linear inequality of the exponents
of the central character of K’ on the two sides. The same inequality ensures the second

containment, since the central character encodes the degree of the natural filtration in #’.
In view of (4.7), the lemma follows. O

4.2. Associated cycles of theta lifts. From the decreasing filtration on H = p*, we
get an increasing filtration for p = Q(7’), and hence obtain the graded module as follows:

gr(p) = ZGB grq(p);

® K’ ! Kt K= *
gry(p) = Z HOIHR*/(TI (1), 7" (v) @ grd+%(jo—||u||—||u||)(ﬂ—/)> @ (0" () W™ (v)7).
HEAR(K')

veAg(K') ( )
4.8

This in fact defines the Poincaré series for # = 0(#’), as the maximal quotient p = Q(#’)
is already irreducible in the present case. See Corollary 3.6.

Remark 4.5. By comparing central characters (of R”), it is easy to see that summation in
gr,(p) is actually finite.
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Let o be an irreducible (finite-dimensional) representation of G/(k, C) which appears in
C[Wy]. We also take 7’ to be a unitary lowest weight representation of (' which comes
from the compact dual pair correspondence of (G(k),G"). To fix notations, we assume 7’
and o are related by the formula:

o=@ L],  Lio)= (00 CW]) "7, (4.9)

where Y is certain character of K.

Recall from §2.4 the lifted module M|o] of L[o]:

M[ ]: <U®C[ pq-l—k])

[ts Poincaré series is given in (2.15).

G(k,C)

Lemma 4.6. Let 7' be a unitary lowest weight module, and let o and k be related to
7' through the formula (4.9). Assume that ©' is genuine with respect to the dual pair

(G(p,q),G"), and let # = O(x') be the theta lift. Let jo be the lowest degree of the joint
harmonics for # @ ©' (cf. (3.7)), and j; = deg o™ (cf. (2.14)). Then the following inequal-
ities hold for the Poincaré series:

Case R: denote ko = (p—q— k)/2 € Z. Then we have
t(=rlroltio=i) /2 p(. 1) > P(M(o];t) > t(rlroltio=i) /2 p(r. 4y, (t > 0),
Case C: denote ko = (p—q —k)/2 € Z. Then we have
t(=rmlrolio=i)/2 p(.4) > P(M[o];t) > t(tmtnllroltio=i)/2 p(z. 1), (t > 0).
Case H: denote kg = p — q— k. Then we have
tonlmoltio=i)/2p (. 4) > P(M[o];t) > tClroltio=i)/2p(z. 4y (¢t > 0).

Proof. We shall only give the proof for Case R. The other two cases are entirely similar.
Also we assume that xo > 0 since the case kg < 0 can be treated in a similar way.

Now pu € Ap(j&v”) and v € Aq(j&v”) if and only if y = o + 21, and v = 8+ 2I,, where
a, 8 € P, (the set of partitions of n), and I,, = (1,...,1) € P,. Also we have the degrees
gl = lal = a1+ -+ an, and ||v]| = |B] = 51 + -+ - + Ba. For a € P, denote by 7
(resp. O'ép)) the irreducible finite dimensional representation of G'L, (resp. O(p,C)) with

: : R+ R ()%
highest weight . Then we have o™ () = o), o (v)* = U(ﬁq).

Note that
7|~ det?? @ Llo],  Lo] = (o © CMy,]) "7,

where K’ = U(n). Thus we can rewrite

Homp, (Tc(yi)wnv éj—)qﬂn ® gri(7 )) Homg, (det(p 2@ To(z )7Té M@ &r; L[UD‘



THETA LIFTING OF LOWEST WEIGHT MODULES 33

Therefore the Poincaré series of gr # = gr p becomes

t) = Zdimgrd(ﬂ') t

d>0
=Y > dimHomg (det?™ ™ @ 7", 7{” @ gry 1 (jyjofjapy Llo])
d>0 o,5€Pn
dim(aép) X a(ﬁq)> L
LY S dimHomg G 6 50,0 0 g, o)
J20 o,6€Py

dim(o(? & o) - i+ 51D,
We put B(e, §;) = dim Homey, (TC(Yn) ® Tén)*a gr; L[UD- Then, we can express

t]o/2p (m:1) Z Z (a + kol B ) dim(aép) < U(ﬁ‘ﬁ) . it (lel+8D) /2

20 o,B€Py
(put o' = o + rol,)
=Y Y B, Bj)dim(c%) | BolP) a2

jZO alepn+ﬁoﬂn
BePy

<3 Y B, 8 j) dim(ol) @ o)) - gt 2

720 o' ,BEP,
= P(Mlo];t) - ttn=mo)l2,

Here we have used the inequality dim ai,) o1, < dim Uiﬁ). On the other hand, we have
tJO/QP (7;t) Z Z — kolln; 7) dim(aép) X U(ﬁq)> gt (alan/2
]>0 o4 ﬁepn

(pUt ﬂ/ - ﬂ — /io]In)
=3 Y Bla.pij)dim(eP Rl ) - rtlell /2

720 a€Py,
ﬁ'EPn Hoﬂn
>3 Y Bla. ) dim(o®) R o)) - b o)/
320 o,0'€Pn

= P(M]o];t) - lntnso)/2.
These two formulas prove the lemma. O

Theorem 4.7. Let 7' be a unitary lowest weight representation of ' arising from the
compact dual pair correspondence of (G(k),G"), for some k. Assume thalt = is genuine
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with respect to the dual pair (G(p,q),G"), and let # = 0(x') be the theta lift of ©'. If

AC (7') = mu [Pl then we have
AC (7)) = mn[0), where O = (O™,

Moreover if o is related to © through the formula (4.9), this multiplicity is given by the
following formulas:

Case R:
dim o (k <n),
= {dim oOk=n0) (| > p).
Case C:
dimo (0 <k <min{m,n}),
my = { dim ok (k> m =n),
dim(o @ CIMj_pm_n]) " (k> m > n).
Case H:
dim o (2k <n),
my = { dim ¢%PCk=0.0 (2k > n; n = 2I),

Sp(2(k-1),0)

dim(a ® (C[CQ(’“_I)D (2k >n; n=214+1).

Proof. Since 7’| ~ x; @ L[o], we see that m. is equal to the multiplicity rankgmer L]o].

This is Computelzi in [29] (see also [43]), and it is as given in the current theorem.
By Lemma 4.6 we have
P(r;t)

im—————— =

t1 P(M[c];t)
This means that the dimension of the support of a finitely generated C[s] module gr 7 is
equal to the dimension of @, which is the support of M[o]. We know that the associated
variety AV (7) of 7 is contained in @ by Proposition 3.12. Since they have the same
dimension, we conclude that AV (7) = O. Now, the same formula (4.10) implies that gr 7
and M[o] have the same multiplicity m, along their common support @. This multiplicity
is given in Theorem 2.3, and it is the same as m. O

Remark 4.8. Note that MJo] is lifted from L[o]| (Proposition 1.10). It is easily checked
that the hypothesis in Theorem 1.9 is satisfied when G'/K" is of tube type. Thus in this
case the equality rankg M[o] = rankger L[o] follows directly from Theorem 1.9. For the
non-tube case, one may also prove the preservation of multiplicity along this line, with a
bit more work.

Corollary 4.9. The Gelfand-Kirillov dimension of © is GKdimr = dim Oy, which is
equal to the following numbers for Cases R,CH, respectively:

1
n(p—l—q—2n—|—r—1)—§r(r—1), r=min{k,n}.

(4.10)
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2

(4 0)(p+ g = m = +7) =
n(2p+2q—2n+2r+1)—r2r+1), r = min{k, [n/2]}.

r = min{k,m,n}.

As remarked in the Introduction, if #’ is a holomorphic discrete series representation,
the multiplicity m, may also be given by the dimension of its lowest R”—type. This of
course implies an equality of dimension of certain space of fixed vectors of o with the
dimension of the lowest [?’—type of 7'. We prove a proposition in that direction.

Recall the complex vector space W), canonically associated to the compact dual pair
(G(k),G"). As usual, let Hj, denote the space of G/(k,C)-harmonic polynomials on Wy,
which has a dual pair correspondence as a G(k,C) x Ki-module (see §2.5). Write

@
Hk‘G(k,(C)xK(’C = Z op(t)H 7. (4.11)

T

Recall also the see-saw pair (cf. §2.1):

Lk) &
U U
G(k) K’
Let
&
C[Wk”L(k,(C)xK(’C = Z pe(T) X T (4.12)

T

be the corresponding decomposition. Note that L(k,C) D G(k,C) is symmetric pair.

Proposition 4.10. Assume that the following conditions hold:

k> 2n, if G"=Sp2n,R),
k>m+4n, if G'=U(m,n), (4.13)
k>n, if G'=0*(2n).

Denote | the real rank of G, as before. Then there is an isomorphism of G(l, C)-modules

o) 0 ‘G(l,(C) ~ pi(7) ‘G(l,(C) )

for any T occurring in Hy, (or equivalently C[Wy]).
Proof. Under the given assumption on k, we have
CWi] ~ Hy @ CIW 9O ~ H, @ Cls']  (as G(k, C) x Ki-modules).
Taking the G/(k — [, C) invariants, we get
CIW, ]G0 ~ (7,) 510 & O8]



36 KYO NISHIYAMA AND CHEN-BO ZHU

On the other hand, we have the decomposition W, = W, & Wi_; and so C[W,] =
CW] @ C[Wi_] as G(1,C) x G(k —1,C) x K{-modules. Thus the space of G(k —[,C)

invariants of C[Wj] becomes

CIWi )90 ~ C[W;] @ C[W.- Z]G““—’) ~ C[W,] @ CJs'].

Here we have used the isomorphism C[W;,_;]%%*=) ~ C[s'], again by our assumption on k.
Thus we obtain the following isomorphism of ( C) x K{-modules:

()19 ~ Wi (4.14)

The desired isomorphism follows immediately. O

Remark 4.11. When G’/ K" is of tube type, the above isomorphism yields especially pleas-
ant formulas, which we list below. Note that they were proved by Gross and Kunze [7],
and by Knapp [17].

<0_(k)>0(k—n,@)

n

‘O(n,(C) = Tén ‘O(n,(C) (k= 2n;n € Pn).

(70 gy, 2 @ (m= sk > 230, 8 € P).

<U(k)>5p(2 -

(k=1),0) o - |
” ‘Sp(?lAC) = Té )‘Sp(Zl,(C) (n=20Lk>n;n € P,).

Here for n € P, (the set of partitions of n), 775”) denotes the irreducible finite dimensional
(k)

representation of GGL, of highest weight . We use the same notation o;’ to denote a
copy of irreducible finite dimensional representation of either O(k,C) or Sp(2k,C) with
n as the highest weight. Finally o @ 3 is defined to be (aq, ...,y ooey — By ooy — B1).

5. APPENDIX: COMPUTATION OF GENERIC FIBERS

5.1. O(p,q) x Sp(2n,R) (2n < p,q). We have the double fibration map

s=M Sym, ¢ Sym, =5

where the moment maps ¢ and i are given by
(A,B)e M, ® M,
{ (A, B) = A'B € M,, =s,

(A, B) = (‘AA, 'BB) € Sym,, & Sym ,, = &'.
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Take a holomorphic nilpotent orbit @2 of rank % in 8 = Sym,, where 0 < k < n,

and consider its lift @, = 0(@'1,:"1). The closure @’1,:"1 is an affine quotient of W), = M ,
by O(k,C):

Qrhol (0 <k <n),
My, /]O(k,C) ~

@hol (k>n).

Here O(k,C) acts on My, via the left multiplication of matrices. The quotient map
(" My, — @bl C Sym,, is given by ('(C') = '{CC (C € My,,).

The null cone is

Myt =t (0) = O X I,
={(A,B,C) | "AA=0,"BB + 'CC = 0} C My (i)

We have the following diagram:

//GLn

O(p, O(q,C
(A'B,A'C) € Xy g L (4,8,0) € My, LH2O0D

Myp,>C
yow | yow | yow |

ABeT. //GLn 119(p,8x0(4,C)

(A,B) € &, Qhol 5 {BB = —tCC

Here =, = o~ (Qh!) and r = min{k,n}. . .
We consider the generic fiber of ¢ : X, ;41 — Oy C M, ,. The fiber of Z € Oy, in N, 414
is
{(Avac)Emp#H—k | Z:AtB} (51)
If rank Z = n, it implies rank A = rank B = n and one can easily deduce that

{(A,B) e N x M, | Z=A'B,rank A = rank B = n}

is a single G'L,-orbit. Now assume that 0 < k& < n. Note that rank Z'Z < rank ‘BB =
rank(—*CC) < k. We assume that Z satisfies the generic condition rank Z*Z = k. Then
we must have rank *BB = k. Thus for each fixed B, the set {C € My, | ‘BB =
—'CCY is a single O(k,C)-orbit. We have thus proved that the set (5.1) is a single
G L, x O(k,C)-orbit, which is closed (since the map M, ,4x — O is an affine quotient
map by GL, x O(k,C)).

The fiber (7*(Z) is an O(k, C)-equivariant quotient of the closed subvariety (5.1) by
the action of GL,. Therefore, (7'(7) is a single O(k, C)-orbit, which is closed.

The case k > n can be treated similarly.

We have in fact proved the following
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Corollary 5.1. Put r = min{k,n}. If Z € Qy, satisfies rank Z = n,rank Z'Z = r, then
the fiber (~1(Z) is a single O(k,C)-orbit. The stabilizer at x € (~*(Z) is conjugate to

{1e} (0<k<mn)
Ok —n,C) (k>n)

Remark 5.2. Clearly, Z € Q, satisfies rank Z < n and rank Z *Z < r. Thus, the condition
rank Z = n,rank Z'Z = r is generic (it is easy to see that the set satisfying the condition
is non-empty).

5.2. U(p,q) x U(m,n) (m+n < p,q). We have the double fibration map

W = Mpygmsn
5= pq@qu mn@Mnm—5

where the moment maps ¢ and i are given by

A B
Z = (C D) € Mpigmin

p(Z) =(A'C,D'B) € M, , © M, = s,
¢(Z) = (tAB7 tDC) € Mm,n S5 Mn,m = 5/-

Take a holomorphic nilpotent orbit @’1,:"1 of rank k in s* = M, ,,, where 0 < k <

min{m,n}, and consider its lift @y = §(Q'}°"). The closure @’} is an affine quotient of
Wi = My mqn by GLy:

Qrbel (0 <k <min{m,n}),
Mk,m-|—n//GLk ~

@hol (n = min{m,n} < k).
Here G Ly, acts on My, 4, via
g-(E,F)=(gE,'"¢"'F), (g€ GLy, E € My, I € My,,).
The quotient map (" : My pmtn, — @’—1,:01 C M, ,, 1s given by
CUEF)="TE  ((E.F)€Mmn)
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The null cone is

Np gtk = p_,;—l—k(o) = m;— X m(;_+k

A B
:{Z = C D | tAB — 0, tDC ‘I’ tFE = 0} C Mp—|—(q-|—k),m-|—n‘
EF

We have the following diagram:

/| GLmXGLy, //GLpXGL,
L

Xp7q+k mp7q-|—k Mk,m-l—n
oty | oty | oty |
o J/GLinXxGLn = /| GLyxGLy ol
A B
t .
((AlC,A'E), DB ) et o op| 2 (E,F)
F'B EF
Cl Projl C'l
(A'C,D*'B) — (é g) Y DO = —tFE
Here =, = o~ (Q/hel) and r = min{k, m,n}.
Let us consider a “contraction map”
A
I Mg 2 <B> —A'B e M- (5'2)

Then the image of f is a closed subvariety
V,={Y € My, | rankY <r} C M, ,, (r = min{k,m,n}),
which is called the determinantal variety of rank r. If we define an action of ¢ € GL; on
(g) € Myynp as g - (g) = (;gtg1>, then V, is isomorphic to the affine quotient of
M40k by GLj, and f is a quotient map:
fiMuygng — Ve = Mook //GLE.

The following results can be proved by elementary calculations. We shall be contented
to just state them. Denote GV the G-principal bundle over G/H, where V is an
H-module.

Lemma 5.3. We keep the notation above. Let us take Y € V, with rankY = r.

(1) If k < min{m,n}, then the fiber f~Y(Y") is a closed G Lg-orbit isomorphic to GLy.
(2) If k > m = n, the fiber f~1(Y) is a closed G Li-orbit isomorphic to GLy/GLy_,.
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(3) If k > m > n, there is a G Ly-equivariant isomorphism
f_l(Y) = GLk*GLk_an—n,m—ny

where GLy_,, acts on My_,, ,,_, by the matriz mulliplication on the left. Thus the fiber
YY) contains exactly two GLi-orbits if m = n + 1; otherwise, there exisl infinitely
many orbits in f~H(Y). Among the GLg-orbits in f~(Y), there exists a unique closed
orbit isomorphic to GL./GLy_,,.

Corollary 5.4. The generic fiber of the quotient map f: My 4, r — V. is a single closed
G Ly-orbit if and only if k < min{m,n} or m = n holds.

Now we consider the generic fiber of ¢ : X, ;44 — 0, C M,,® M,,. Take (S,T) € O,.
Instead of investigating the fiber (*((S,T")) C X, 44k, we consider the fiber in M, ;41

A B
T(S,T):{ C D) eN, ik S:AfC,T:DfB}. (5.3)
E F

We use the notations of Lemma 5.3 in the following

Lemma 5.5. [frank S = m,rankT = n and rank ST = r, then there exists a Y € M, ,
with rank Y = r such that

Y(S,T)~ GL,, x GL, x f7Y) (GL,, X GL, x GLg-equivariant isomorphism).
In particular, we have

GL,, x GL, x GL (k < min{m,n}),
T(S,T) ~ < GL, x GL, x (GLk/GLk_n) (k >m = n),
GL,, xGL, % (GLk*GLk_an—n,m—n) (k >m > n)

Corollary 5.6. Let us assume that rank S = m,rankT = n and rank ST = r. Then, we
have (7H((S,T)) =~ f~Y(Y) for Y € M,, . as in the lemma above. More precisely,

G Ly (k < min{m,n}),
CTN(S,T)) ~{ GLy/GLy_, (k> m =n),
GLp*ar,_, My—pm—n (k>m>n).
Thus, the generic fiber (~1((S,T)) is a closed G Ly-orbit if and only if k < min{m,n} or

m=n.

5.3. Sp(p,q) x O*(2n) (n < p,q). We have the following double fibration map
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W = M2p—|—2q,n
AN
5 = M2p,2q Alt n @ Alt n — 5/

where the moment maps ¢ and i are given by

A
Z = (B) € Maptagm

QO(Z) = AtB € M2p,2q =5 0 1
)
O(Z)=(TAJ,A, 'BJ,B) € Alt, @ Alt,, = &' P
Take a holomorphic nilpotent orbit @'h! of rank 2k in s° = Alt,,, where 0 < 2k < n,
and consider its lift @), = #(Q'}°!). Note that the rank is necessarily an even integer. The
closure @1 is an affine quotient of Wy = My, by Sp(2k, C):
Qrbel (0 <2k <n)
Mok /) Sp(2k,C) ~ ¢ [ =1[n/2]
Qrbel (n < 2k)

Here Sp(2k,C) acts on My, via the left multiplication of matrices. The quotient map
¢ Myg,, — Q8L C Alt, is given by ('(A) = 'AJ,A (A € My,).

The null cone is

Mpask =t i(0) = N XN,
={(A,B,C) | "AJ,A=0,'BJ,B+ 'CJ,C = 0} C Mayi(2912k) -
We have the following diagram:

//GLn //5p(2p,0)x Sp(24,C)

Xp,q-l—k DR 9Tp,q-l-k M2k,n
//5p(2k,0) l //5p(2k,0) l //5p(2k,0) l

0, /|G Ly =, //5p(2p,0) x Sp(24,C) O/hol
(A'B,AlC) Ltk (4, B, cy 2oL C
cl projl c’l

A'B —~ (A4,B) —— 'BJ,B=-'CJ,C
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Here =, = o1 (Q/hel) and r = min{k, [}.

Let us consider a “contraction map”
fiMoy, > A— "AJ A € Alt,. (5.4)
Then the image of f is a closed subvariety
V, ={Y € Alt,, | rank Y < 2r} C Alt, (r = min{k,}),

which is a closed subvariety of the determinantal variety of rank 2r. If we define an action
of g € Sp(2k,C) on Mayy,, by the left multiplication of matrices, then V; is isomorphic to
the affine quotient of My, by Sp(2k,C), and f is a quotient map:

[ Mg, — V, = Mo, [/ Sp(2k, C).
Again we state the following results without proof.

Lemma 5.7. We keep the notation above. Let us take Y € V, with rankY = 2r and
r=min{k,l = [n/2]}.

(1) If 2k < n, then the fiber f~1(Y) is a closed Sp(2k,C)-orbit isomorphic to Sp(2k,C).
(2) If 2k > n and n is even, the fiber f~1(Y) is a closed Sp(2k,C)-orbit isomorphic to
Sp(Qk, C)/Sp(Q(k - T)v C)

(3) If 2k > n and n is odd, the fiber f~H(Y") consists of exactly two orbits. The closed
orbit which is smaller is isomorphic to Sp(2k,C)/Sp(2(k — r),C), and the larger orbit
is isomorphic to Sp(2k,C)/Q,, where Q, C Sp(2(k — r),C) is the stabilizer of a vector
v £ 0 in CHF7)

F7HY) & Sp(2k, ©)/Sp(2(k — 1),©) U Sp(2k, ©)/Q,
~ Sp(Qk, (C)*Sp(z(k—r),(C) (Cz(k_T) .

Remark 5.8. The maximal parabolic subgroup which leaves Cv stable is isomorphic to

Q, x C*.

Corollary 5.9. The generic fiber of the quotient map f : My, — V. is a single closed
Sp(2k, C)-orbit if and only if 2k < n orn is even.

Now we consider the generic fiber of ¢ : X, 41 — 0, C My, 24 Take S € O, . Instead
of investigating the fiber (T!(S) C X, 41k, we consider the fiber in M, ,14:

T(5) = {(Avac) € mp,q-l—k‘ S = AtB}. (5.5)
We use the notations of Lemma 5.7 in the following

Lemma 5.10. Put r = min{k,l} as above. If rank S = n and rank SJ, 'S = 2r, then
there exists a Y € Alt,, with rankY = 2r such that

Y(S)~ GL, x f7'(Y) (GL, x Sp(2k, C)-equivariant isomorphism).
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In particular, we have

GL, x Sp(2k,C) (2k <n),
Y(S)~ < GL, x (Sp(2k,C)/Sp(2(k —r),C) (2k > n; n is even),
G Ly X (Sp(2k, C)* gp2(k—r),0) CHk=7))y 2k > n; n is odd).

Corollary 5.11. Let us assume that rank S = n and rank SJ,'S = 2r. Then, we have
CHS) = YY) for Y € Alt,, in the above lemma. More precisely,

Sp(2k, C) (2k <n),

CH(S) = < Sp(2k,C)/Sp(2(k — 1), C) (2k > n; n is even),
Sp(2k, C)%* sp(a(k—r),0) CHk=7) (2K > n; n is odd).
Thus, the generic fiber (71(S) is a closed Sp(2k,C)-orbit if and only if 2k < n or n is

even.
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