Orbit graphs of associated varieties

-joint work with

Peter Trapa & Akihito Wachi

Kyo Nishiyama

Aoyama Gakuin University

CBMS 2012: Unitary Representations of Reductive Groups ${\rm July~16-20,~2012}$

University of Massachusetts Boston

Motivation & Problems

- Motivation & Problems
- **2** Orbit graph Introduce orbit graph of nilpotent orbits for a symmetric pair (G, K)

2 / 24

- Motivation & Problems
- ② Orbit graph
 Introduce orbit graph of nilpotent orbits for a symmetric pair (G, K)
- Description of orbit graphs
 Give a combinatorial description of orbit graphs

- Motivation & Problems
- ② Orbit graph Introduce orbit graph of nilpotent orbits for a symmetric pair (G, K)
- Description of orbit graphs
 Give a combinatorial description of orbit graphs
- Induction of orbit graphs
 Define induction of orbit graphs, related to connectedness in codimension one

- Motivation & Problems
- ② Orbit graph Introduce orbit graph of nilpotent orbits for a symmetric pair (G, K)
- Description of orbit graphs
 Give a combinatorial description of orbit graphs
- Induction of orbit graphs
 Define induction of orbit graphs, related to connectedness in codimension one
- Associated varieties of HC-modules
 Show connected components of orbit graphs are associated varieties of certain HC-modules

G : reductive algebraic group / $\mathbb C$

 $\mathcal{K} \subset \mathcal{G}$: symmetric subgrp \leftrightarrow involution θ

G : reductive algebraic group / $\mathbb C$

 $\mathcal{K} \subset \mathcal{G}$: symmetric subgrp \leftrightarrow involution θ

Example of Symmetric Pair (G, K)

$$\mathcal{G} = \mathit{U}(\mathit{p},\mathit{q}) = \{\mathit{g} \in \mathsf{GL}_\mathit{n}(\mathbb{C}) \mid \, {}^t\overline{\mathit{g}}\mathit{I}_{\mathit{p},\mathit{q}}\mathit{g} = \mathit{I}_{\mathit{p},\mathit{q}}\} \quad \mathit{I}_{\mathit{p},\mathit{q}} = \mathsf{diag}(1_\mathit{p},-1_\mathit{q})$$

$$K = U(p) \times U(q) \stackrel{\mathsf{diag \ embedded}}{\longrightarrow} 0$$

G : reductive algebraic group / $\mathbb C$

 $\mathcal{K} \subset \mathcal{G}$: symmetric subgrp \leftrightarrow involution θ

Example of Symmetric Pair (G, K)

$$G = U(p,q) = \{g \in \mathsf{GL}_n(\mathbb{C}) \mid {}^t\overline{g}I_{p,q}g = I_{p,q}\}$$
 $I_{p,q} = \mathsf{diag}(1_p,-1_q)$ $\mathcal{K} = U(p) \times U(q) \stackrel{\mathsf{diag\ embedded}}{\longleftrightarrow} G$

$$\mathfrak{g} := \mathrm{Lie}\,(\mathit{G})_{\mathbb{C}} \leadsto \ \mathfrak{g} = \ \mathfrak{k} \ \oplus \ \mathfrak{s} \quad : \mathsf{Cartan \ decomp}$$

$$\theta \quad (+1) \quad (-1)$$

$$\mathsf{Nilpotent \ variety} : \mathcal{N}(\mathfrak{s}) = \mathfrak{s} \cap \mathcal{N}(\mathfrak{g}) \qquad \mathit{G} \curvearrowright \mathcal{N}(\mathfrak{g}), \ \mathit{K} \curvearrowright \mathcal{N}(\mathfrak{s})$$

G : reductive algebraic group / $\mathbb C$

 $\mathcal{K} \subset \mathcal{G}$: symmetric subgrp \leftrightarrow involution θ

Example of Symmetric Pair (G, K)

$$G = U(p,q) = \{g \in \mathsf{GL}_n(\mathbb{C}) \mid {}^t\overline{g}I_{p,q}g = I_{p,q}\} \quad I_{p,q} = \mathsf{diag}(1_p,-1_q)$$
 $\mathcal{K} = U(p) \times U(q) \stackrel{\mathsf{diag\ embedded}}{\longleftrightarrow} \quad G$

$$\mathfrak{g}:=\operatorname{Lie}\,(G)_{\mathbb{C}} \leadsto \quad \mathfrak{g}= \ \mathfrak{k} \quad \oplus \quad \mathfrak{s} \quad : \text{ Cartan decomp}$$

$$\theta \quad (+1) \quad (-1)$$

$$\text{Nilpotent variety}: \ \mathcal{N}(\mathfrak{s})=\mathfrak{s}\cap \mathcal{N}(\mathfrak{g}) \qquad G \ ^{\frown} \mathcal{N}(\mathfrak{g}), \ \ \mathcal{K} \ ^{\frown} \mathcal{N}(\mathfrak{s})$$

Fact 1: nilpotent variety

- $\#\mathcal{N}(\mathfrak{g})/\operatorname{Ad} G<\infty:\exists$ fin many # of G-orbits
- $\#\mathcal{N}(\mathfrak{s})/\operatorname{Ad} K<\infty:\exists$ fin many # of K-orbits

4□ > 4□ > 4□ > 4□ > 4□ > 90

$$\mathcal{O} \in \mathcal{N}(\mathfrak{g})/G$$
: nilpotent G -orbit \leadsto

$$\mathcal{O} \cap \mathfrak{s} = \mathbb{O}_1 \sqcup \cdots \sqcup \mathbb{O}_\ell$$
: decomp into conn comp

 $\mathcal{O} \in \mathcal{N}(\mathfrak{g})/G$: nilpotent G-orbit \leadsto $\mathcal{O} \cap \mathfrak{s} = \mathbb{O}_1 \sqcup \cdots \sqcup \mathbb{O}_\ell$: decomp into conn comp

Fact 2: nilpotent orbits for symmetric pair

• $\forall \mathbb{O}_i$ is K-orbit

$$\mathcal{O} \in \mathcal{N}(\mathfrak{g})/G$$
: nilpotent G -orbit \leadsto

$$\mathcal{O} \cap \mathfrak{s} = \mathbb{O}_1 \sqcup \cdots \sqcup \mathbb{O}_\ell$$
: decomp into conn comp

Fact 2: nilpotent orbits for symmetric pair

- $\forall \mathbb{O}_i$ is K-orbit
- ullet \mathcal{O} is a symplectic G-variety (Kirillov-Kostant symplectic form)

$$\mathcal{O} \in \mathcal{N}(\mathfrak{g})/G$$
: nilpotent G -orbit \leadsto

$$\mathcal{O} \cap \mathfrak{s} = \mathbb{O}_1 \sqcup \cdots \sqcup \mathbb{O}_\ell$$
: decomp into conn comp

Fact 2 : nilpotent orbits for symmetric pair

- $\forall \mathbb{O}_i$ is K-orbit
- O is a symplectic G-variety (Kirillov-Kostant symplectic form)
- $\mathbb{O}_i \subset \mathcal{O}$ is Lagrangian subvariety, dim $\mathbb{O}_i = \frac{1}{2} \dim \mathcal{O}$ in particular

$$\mathcal{O} \in \mathcal{N}(\mathfrak{g})/G : \text{ nilpotent } G\text{-orbit} \leadsto \\ \mathcal{O} \cap \mathfrak{s} = \mathbb{O}_1 \sqcup \cdots \sqcup \mathbb{O}_\ell : \text{ decomp into conn comp}$$

Fact 2: nilpotent orbits for symmetric pair

- $\forall \mathbb{O}_i$ is K-orbit
- ullet $\mathcal O$ is a symplectic G-variety (Kirillov-Kostant symplectic form)
- $\mathbb{O}_i \subset \mathcal{O}$ is Lagrangian subvariety, $\dim \mathbb{O}_i = \frac{1}{2} \dim \mathcal{O}$ in particular

```
 \begin{array}{ll} (\pi,X): \text{ irreducible HC } (\mathfrak{g},K)\text{-module} \\ & \rightsquigarrow \mathcal{AV}(X): \text{ associated variety } \subset \mathcal{N}(\mathfrak{s}), \quad \textit{K-stable} \end{array}
```

 $\mathcal{O} \in \mathcal{N}(\mathfrak{g})/G$: nilpotent G-orbit \leadsto $\mathcal{O} \cap \mathfrak{s} = \mathbb{O}_1 \sqcup \cdots \sqcup \mathbb{O}_\ell$: decomp into conn comp

Fact 2: nilpotent orbits for symmetric pair

- $\forall \mathbb{O}_i$ is K-orbit
- \mathcal{O} is a symplectic G-variety (Kirillov-Kostant symplectic form)
- $\mathbb{O}_i \subset \mathcal{O}$ is Lagrangian subvariety, dim $\mathbb{O}_i = \frac{1}{2} \dim \mathcal{O}$ in particular

$$(\pi, X)$$
: irreducible HC (\mathfrak{g}, K) -module $\rightsquigarrow \mathcal{AV}(X)$: associated variety $\subset \mathcal{N}(\mathfrak{s})$, K -stable

Fact 3: Associated Variety

- $\mathcal{AV}(\operatorname{Ann} X) = \overline{\mathcal{O}}$: irreducible
- $\mathcal{AV}(X) = \cup_{i=1}^{r} \overline{\mathbb{O}}_{i_{i}}$: irreducible decomp (reducible in general)

4 / 24

Theorem (Vogan, 1991)

Suppose • (π, X) : irreducible HC (\mathfrak{g}, K) -module

• $\mathcal{AV}(X)$ is reducible

 \implies codim $\partial \mathbb{O}_i = 1$ for $\forall \overline{\mathbb{O}}_i \subset \mathcal{AV}(X)$: irreducible component

Notation: $\partial \mathbb{O} = \overline{\mathbb{O}} \setminus \mathbb{O}$ codim $\partial \mathbb{O}$: codim of $\partial \mathbb{O}$ in $\overline{\mathbb{O}}$

```
Theorem (Vogan, 1991)
```

Suppose • (π, X) : irreducible HC (\mathfrak{g}, K) -module

• $\mathcal{AV}(X)$ is reducible

 \implies codim $\partial \mathbb{O}_i = 1$ for $\forall \overline{\mathbb{O}}_i \subset \mathcal{AV}(X)$: irreducible component

We are interested in the boundaries of $\{\overline{\mathbb{O}}_i\}_i$ which are codimension one

```
Theorem (Vogan, 1991)
```

Suppose • (π, X) : irreducible HC (\mathfrak{g}, K) -module

• $\mathcal{AV}(X)$ is reducible

 \implies codim $\partial \mathbb{O}_i = 1$ for $\forall \overline{\mathbb{O}}_i \subset \mathcal{AV}(X)$: irreducible component

 \mathbb{C} : We are interested in the boundaries of $\{\overline{\mathbb{O}}_i\}_i \longrightarrow \text{Orbit Graph } \Gamma_{\mathsf{K}}(\mathcal{O})$

Theorem (Vogan, 1991)

Suppose • (π, X) : irreducible HC (\mathfrak{g}, K) -module

• $\mathcal{AV}(X)$ is reducible

 \implies codim $\partial \mathbb{O}_i = 1$ for $\forall \overline{\mathbb{O}}_i \subset \mathcal{AV}(X)$: irreducible component

... We are interested in the boundaries of $\{\mathbb{O}_i\}_i$ \leadsto Orbit Graph $\Gamma_{\mathsf{K}}(\mathcal{O})$ which are codimension one

$$\mathcal{O} \in \mathcal{N}(\mathfrak{g})$$
 $\mathcal{O} \cap \mathfrak{s} = \mathbb{O}_1 \sqcup \cdots \sqcup \mathbb{O}_\ell$: decomp into K-orbits

Definition $(\Gamma_K(\mathcal{O}) : orbit graph)$

- Vertices : $\mathscr{V} = \{ \mathbb{O}_i \mid 1 \leq i \leq \ell \}$: nilpotent *K*-orbits
- $\bullet \ \, \mathsf{Edges} : \, \mathbb{O}_i \mathbb{O}_j \iff \mathsf{codim} \, \partial \, \mathbb{O}_i \cap \partial \, \mathbb{O}_j = 1 \quad \mathsf{in} \, \, \overline{\mathbb{O}}_i \; (\mathsf{or} \, \, \overline{\mathbb{O}}_j)$

■ How to find out the tructure of $\Gamma_K(\mathcal{O})$?

■ How to find out the tructure of $\Gamma_K(\mathcal{O})$?

Strategy:

Use Ohta's description of closure ordering

[T. Ohta, Tohoku Math J, 1991]

■ How to find out the tructure of $\Gamma_{\mathsf{K}}(\mathcal{O})$?

Strategy:

1 Use Ohta's description of closure ordering

[T. Ohta, Tohoku Math J, 1991]

- Calculate dimension and determine codim-one-adjacency
 - → Find a combinatorial description

■ How to find out the tructure of $\Gamma_{\mathsf{K}}(\mathcal{O})$?

Strategy:

Use Ohta's description of closure ordering

[T. Ohta, Tohoku Math J, 1991]

- Calculate dimension and determine codim-one-adjacency
 - → Find a combinatorial description
- **Solution** Embedding of $\Gamma_{K}(\mathcal{O})$ into Euclidean space \mathbb{R}^{N}

■ How to find out the tructure of $\Gamma_K(\mathcal{O})$?

Strategy:

- Use Ohta's description of closure ordering
 - [T. Ohta, Tohoku Math J, 1991]
- Calculate dimension and determine codim-one-adjacency
 - → Find a combinatorial description
- **Solution** Embedding of $\Gamma_{K}(\mathcal{O})$ into Euclidean space \mathbb{R}^{N}
- Induction of graphs from low rank case

■ How to find out the tructure of $\Gamma_{\mathsf{K}}(\mathcal{O})$?

Strategy:

- 1 Use Ohta's description of closure ordering
 - [T. Ohta, Tohoku Math J, 1991]
- Calculate dimension and determine codim-one-adjacency
 - → Find a combinatorial description
- **Solution** Embedding of $\Gamma_{K}(\mathcal{O})$ into Euclidean space \mathbb{R}^{N}
- Induction of graphs from low rank case

Skip (1) & (2) \rightsquigarrow want to describe (3) & (4) in this talk

■ How to find out the tructure of $\Gamma_K(\mathcal{O})$?

Strategy:

Use Ohta's description of closure ordering

[T. Ohta, Tohoku Math J, 1991]

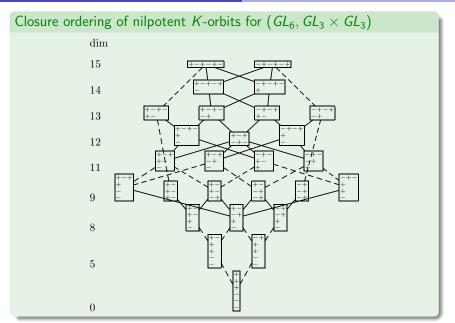
- Calculate dimension and determine codim-one-adjacency
 - → Find a combinatorial description
- **Solution** Embedding of $\Gamma_{K}(\mathcal{O})$ into Euclidean space \mathbb{R}^{N}
- Induction of graphs from low rank case

Skip (1) & (2) \rightsquigarrow want to describe (3) & (4) in this talk

type AIII

We are concentrating on type AIII case:

$$G = \operatorname{GL}_n \supset K = \operatorname{GL}_p \times \operatorname{GL}_q \ (n = p + q) \longleftrightarrow G_{\mathbb{R}} = \operatorname{U}(p, q)$$



1 How many vertices in $\Gamma_K(\mathcal{O})$? (i.e., how many K-orbits are contained in a single *G*-orbit?)

- How many vertices in $\Gamma_K(\mathcal{O})$? (i.e., how many K-orbits are contained in a single *G*-orbit?)
- **2** Describe explicit structure of $\Gamma_{K}(\mathcal{O})$

- How many vertices in $\Gamma_K(\mathcal{O})$? (i.e., how many K-orbits are contained in a single *G*-orbit?)
- **2** Describe explicit structure of $\Gamma_{\mathsf{K}}(\mathcal{O})$
- **3** When is $\Gamma_{K}(\mathcal{O})$ connected?

- How many vertices in $\Gamma_K(\mathcal{O})$? (i.e., how many K-orbits are contained in a single *G*-orbit?)
- 2 Describe explicit structure of $\Gamma_{K}(\mathcal{O})$
- **3** When is $\Gamma_{K}(\mathcal{O})$ connected?
- Find # of conn components of $\Gamma_{K}(\mathcal{O})$

- How many vertices in $\Gamma_K(\mathcal{O})$? (i.e., how many K-orbits are contained in a single *G*-orbit?)
- **2** Describe explicit structure of $\Gamma_{\mathsf{K}}(\mathcal{O})$
- **1** When is $\Gamma_{\mathsf{K}}(\mathcal{O})$ connected?
- Find # of conn components of $\Gamma_{K}(\mathcal{O})$
- **1** Pick $\forall Z \subset \Gamma_{\mathsf{K}}(\mathcal{O})$: conn component \exists irreducible HC-module X s.t. $Z = \mathcal{AV}^{\Gamma}(X)$?

- How many vertices in $\Gamma_K(\mathcal{O})$? (i.e., how many K-orbits are contained in a single *G*-orbit?)
- 2 Describe explicit structure of $\Gamma_{K}(\mathcal{O})$
- **1** When is $\Gamma_{\mathsf{K}}(\mathcal{O})$ connected?
- Find # of conn components of $\Gamma_{K}(\mathcal{O})$
- **1** Pick $\forall Z \subset \Gamma_{\mathsf{K}}(\mathcal{O})$: conn component \exists irreducible HC-module X s.t. $Z = \mathcal{AV}^{\Gamma}(X)$?
- **1** More generally, pick $Z' \subset \Gamma_K(\mathcal{O})$: connected subgraph \exists irreducible HC-module X s.t. $Z' = \mathcal{AV}^{\Gamma}(X)$?

- How many vertices in $\Gamma_K(\mathcal{O})$? (i.e., how many K-orbits are contained in a single G-orbit?)
- 2 Describe explicit structure of $\Gamma_K(\mathcal{O})$
- **3** When is $\Gamma_K(\mathcal{O})$ connected?
- Find # of conn components of $\Gamma_K(\mathcal{O})$
- Pick $\forall Z \subset \Gamma_K(\mathcal{O})$: conn component \exists irreducible HC-module X s.t. $Z = \mathcal{AV}^\Gamma(X)$?
- More generally, pick $Z' \subset \Gamma_K(\mathcal{O})$: connected subgraph ∃ irreducible HC-module X s.t. $Z' = \mathcal{AV}^{\Gamma}(X)$?

Some remarks:

- Notion of admissible orbits ... Ohta(1991), Noël(2001)
- Orbits with different shapes can share codim 1 boundary
- Special piece? Singularities?

Orbit parametrization . . . Signed Young diagram

$$\mathsf{YD}(n) = \{\lambda \mid \lambda \vdash n\} \qquad \qquad \{\mathcal{O} = \mathcal{O}_{\lambda} \mid \lambda \in \mathsf{YD}(n)\}$$

Orbit parametrization . . . Signed Young diagram

Young diagram (or partition)
$$\longleftrightarrow$$
 nilpotent G -orbits
$$\mathsf{YD}(n) = \{\lambda \mid \lambda \vdash n\} \qquad \{\mathcal{O} = \mathcal{O}_{\lambda} \mid \lambda \in \mathsf{YD}(n)\}$$
signed Young diagram (= SYD) \longleftrightarrow nilpotent K -orbits
$$\mathsf{SYD}(\lambda; p, q) \qquad \{\mathbb{O}_{\mathcal{T}} \mid \mathcal{T} \in \mathsf{SYD}(\lambda; p, q)\}$$

Orbit parametrization ... Signed Young diagram

Young diagram (or partition)
$$\longleftrightarrow$$
 nilpotent G -orbits
$$YD(n) = \{\lambda \mid \lambda \vdash n\} \qquad \{\mathcal{O} = \mathcal{O}_{\lambda} \mid \lambda \in YD(n)\}$$
signed Young diagram (= SYD) \longleftrightarrow nilpotent K -orbits
$$SYD(\lambda; p, q) \qquad \{\mathbb{O}_{\mathcal{T}} \mid \mathcal{T} \in SYD(\lambda; p, q)\}$$

Vertices :
$$\mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) = \{\mathbb{O}_{\mathcal{T}} \mid \mathcal{T} \in \mathsf{SYD}(\lambda; p, q)\}$$

Orbit parametrization . . . Signed Young diagram

$$\mathsf{YD}(n) = \{\lambda \mid \lambda \vdash n\}$$

Young diagram (or partition)
$$\longleftrightarrow$$
 nilpotent G-orbits

$$\mathsf{YD}(n) = \{ \lambda \mid \lambda \vdash n \}$$
 {

$$\{\mathcal{O} = \mathcal{O}_{\lambda} \mid \lambda \in \mathsf{YD}(n)\}$$

$$SYD(\lambda; p, q)$$

signed Young diagram (= SYD)
$$\longleftrightarrow$$
 nilpotent K-orbits
SYD(λ ; p, q) $\{ \mathbb{O}_{\mathcal{T}} \mid \mathcal{T} \in SYD(\lambda; p, q) \}$

Vertices :
$$\mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) = \{\mathbb{O}_{T} \mid T \in \mathsf{SYD}(\lambda; p, q)\}$$

Examples of signed Young diagram
$$(p, q) = (4, 4)$$

shape :
$$\lambda = (3, 2, 2, 1) =$$
 (Jordan blocks)

$$\begin{split} \lambda &= (i_1, \dots, i_1, i_2, \dots, i_2, \dots, i_k, \dots, i_k) & i_1 > i_2 > \dots > i_k > 0 \\ &= (i_1^{m(i_1)}, i_2^{m(i_2)}, \dots, i_k^{m(i_k)}) & m(i_j) > 0 \text{ (multiplicity)} \end{split}$$

$$\begin{split} \lambda &= (i_1, \dots, i_1, i_2, \dots, i_2, \dots, i_k, \dots, i_k) & i_1 > i_2 > \dots > i_k > 0 \\ &= (i_1^{m(i_1)}, i_2^{m(i_2)}, \dots, i_k^{m(i_k)}) & m(i_j) > 0 \text{ (multiplicity)} \end{split}$$

Among those m(i) rows of length i,

$$m^+(i) = m_T^+(i)$$
 rows begin with $m^-(i) = m_T^-(i)$ rows begin with $m^-(i) = m_T^-(i)$

so that $m(i) = m^+(i) + m^-(i)$: multiplicity of i

$$\begin{split} \lambda &= (i_1, \dots, i_1, i_2, \dots, i_2, \dots, i_k, \dots, i_k) & i_1 > i_2 > \dots > i_k > 0 \\ &= (i_1^{m(i_1)}, i_2^{m(i_2)}, \dots, i_k^{m(i_k)}) & m(i_j) > 0 \text{ (multiplicity)} \end{split}$$

Among those m(i) rows of length i,

$$m^+(i) = m_T^+(i)$$
 rows begin with $+$
 $m^-(i) = m_T^-(i)$ rows begin with $-$

so that $m(i) = m^+(i) + m^-(i)$: multiplicity of i

$$\begin{split} \lambda &= (i_1, \dots, i_1, i_2, \dots, i_2, \dots, i_k, \dots, i_k) & i_1 > i_2 > \dots > i_k > 0 \\ &= (i_1^{m(i_1)}, i_2^{m(i_2)}, \dots, i_k^{m(i_k)}) & m(i_j) > 0 \text{ (multiplicity)} \end{split}$$

Among those m(i) rows of length i,

$$m^+(i) = m_T^+(i)$$
 rows begin with $+$
 $m^-(i) = m_T^-(i)$ rows begin with $-$

so that $m(i) = m^+(i) + m^-(i)$: multiplicity of i

Define
$$\pi: \mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^k$$
 by
$$\pi(\mathcal{T}) = (m^+(i_1), m^+(i_2), \dots, m^+(i_k)) \in \mathbb{Z}^k_{\geq 0} \subset \mathbb{R}^k$$
 where k is $\#$ of different parts in λ

Define
$$\pi: \mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^k$$
 by
$$\pi(\mathcal{T}) = (m^+(i_1), m^+(i_2), \dots, m^+(i_k)) \in \mathbb{Z}^k_{\geq 0} \subset \mathbb{R}^k$$
 where k is $\#$ of different parts in λ

 $m^+(i_r)$'s must satisfy 2 conditions

Define
$$\pi: \mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^k$$
 by
$$\pi(\mathcal{T}) = (m^+(i_1), m^+(i_2), \dots, m^+(i_k)) \in \mathbb{Z}^k_{\geq 0} \subset \mathbb{R}^k$$
 where k is $\#$ of different parts in λ

 $m^+(i_r)$'s must satisfy 2 conditions

Define
$$\pi: \mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^k$$
 by
$$\pi(\mathcal{T}) = (m^+(i_1), m^+(i_2), \dots, m^+(i_k)) \in \mathbb{Z}^k_{\geq 0} \subset \mathbb{R}^k$$
 where k is $\#$ of different parts in λ

 $m^+(i_r)$'s must satisfy 2 conditions

- $0 \le m^+(i_r) \le m(i_r) \qquad (1 \le r \le k),$
- parity condition : $p-q = \sum_{i_r \text{ odd}} (m^+(i_r) - m^-(i_r)) = 2 \sum_{i_r \text{ odd}} m^+(i_r) - \sum_{i_r \text{ odd}} m(i_r).$

Remark

Difference $m^+(i_r) - m^-(i_r)$ contributes only when row length i_r is odd (if even, the same number of +'s and -'s appear)

$$\pi: \overset{\cdot}{\mathscr{V}}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^k$$

$$\pi(T) = (m^+(i_1), m^+(i_2), \dots, m^+(i_k)) \in \mathbb{Z}^k_{\geq 0}$$

$$\pi: \mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^{k}$$

$$\pi(T) = (m^{+}(i_{1}), m^{+}(i_{2}), \dots, m^{+}(i_{k})) \in \mathbb{Z}_{\geq 0}^{k}$$

Theorem

The map π so defined is a bijection between

$$\pi: \mathscr{V}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^{k}$$

$$\pi(T) = (m^{+}(i_{1}), m^{+}(i_{2}), \dots, m^{+}(i_{k})) \in \mathbb{Z}_{\geq 0}^{k}$$

Theorem

The map π so defined is a bijection between

• nilpotent K-orbits $\{\mathbb{O}_T \mid T \in SYD(\lambda; p, q)\}$ and

$$\pi: \overset{\cdot}{\mathscr{V}}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^{k}$$

$$\pi(\mathcal{T}) = (m^{+}(i_{1}), m^{+}(i_{2}), \dots, m^{+}(i_{k})) \in \mathbb{Z}^{k}_{\geq 0}$$

Theorem

The map π so defined is a bijection between

- nilpotent K-orbits $\{\mathbb{O}_T \mid T \in SYD(\lambda; p, q)\}$ and
- \mathbb{Z} -lattice points $(x_i)_{1 \le i \le k}$ in the hyper cube

$$[0, m(i_1)] \times [0, m(i_2)] \times \cdots \times [0, m(i_k)]$$

satisfying the parity condition :

$$2\sum_{i_r \text{ odd}} x_r = p - q + \sum_{i_r \text{ odd}} m(i_r)$$

$$\pi: \overset{\cdot}{\mathscr{V}}(\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})) \simeq \mathsf{SYD}(\lambda; p, q) \to \mathbb{R}^{k}$$

$$\pi(T) = (m^{+}(i_{1}), m^{+}(i_{2}), \dots, m^{+}(i_{k})) \in \mathbb{Z}_{\geq 0}^{k}$$

Theorem

The map π so defined is a bijection between

- nilpotent K-orbits $\{\mathbb{O}_T \mid T \in SYD(\lambda; p, q)\}$ and
- \mathbb{Z} -lattice points $(x_i)_{1 \le i \le k}$ in the hyper cube

$$[0, m(i_1)] \times [0, m(i_2)] \times \cdots \times [0, m(i_k)]$$

satisfying the parity condition :

$$2\sum_{i_r \text{ odd}} x_r = p - q + \sum_{i_r \text{ odd}} m(i_r)$$

Thus we are left to determine the edges of the orbit graph.

Theorem (Description of Edge)

Two vertices $\mathbb{O}_T, \mathbb{O}_{T'} \in \mathscr{V}(\Gamma_K(\mathcal{O}_{\lambda}))$ are connected by edge

$$\iff \quad \pi(\mathit{T}) - \pi(\mathit{T}') \in \{\pm(e_r - e_{r+1}) \mid 1 \leq r \leq k-1\} \cup \{\pm e_k\}$$

Here $\{e_r = (0, \dots, 1, \dots, 0) \mid 1 \le r \le k\}$ denotes the std basis

Theorem (Description of Edge)

Two vertices $\mathbb{O}_T, \mathbb{O}_{T'} \in \mathcal{V}(\Gamma_K(\mathcal{O}_\lambda))$ are connected by edge

$$\iff \quad \pi(T) - \pi(T') \in \{\pm(e_r - e_{r+1}) \mid 1 \leq r \leq k-1\} \cup \{\pm e_k\}$$

Here $\{e_r = (0, \dots, 1, \dots, 0) \mid 1 \le r \le k\}$ denotes the std basis

Orbit graph for
$$(p, q) = (6, 6)$$
, $\lambda = (4, 3, 3, 1, 1)$

 \mathbb{Z} -lattice pts (x_1, x_2, x_3) in $[0,1] \times [0,2] \times [0,2]$

parity cond:

$$2(x_2 + x_3) = p - q + \#(\text{odd rows})$$

= 6 - 6 + 2 + 2 = 4

4 D > 4 A > 4 B > 4 B >

Theorem (Description of Edge)

Two vertices $\mathbb{O}_T, \mathbb{O}_{T'} \in \mathscr{V}(\Gamma_K(\mathcal{O}_\lambda))$ are connected by edge

$$\iff \quad \pi(T) - \pi(T') \in \{\pm (e_r - e_{r+1}) \mid 1 \le r \le k-1\} \cup \{\pm e_k\}$$

Here $\{e_r = (0, \dots, 1, \dots, 0) \mid 1 \le r \le k\}$ denotes the std basis

Orbit graph for
$$(p, q) = (6, 6)$$
, $\lambda = (4, 3, 3, 1, 1)$

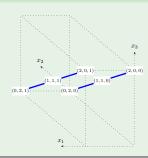
$$\mathbb{Z}$$
-lattice pts (x_1,x_2,x_3) in $[0,1] imes [0,2] imes [0,2]$

parity cond:

$$2(x_2 + x_3) = p - q + \#(\text{odd rows})$$

= 6 - 6 + 2 + 2 = 4

→ 2-conn components



Orbit graph for $(p, q) = (9, 9), \quad \lambda = (6, 4, 4, 2, 2)$

 \mathcal{O}_{λ} : even nilpotent orbit

 \mathbb{Z} -lattice pts (x_1, x_2, x_3) in $[0,1] \times [0,2] \times [0,2]$

parity cond: none

No odd parts!

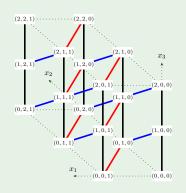
Orbit graph for (p, q) = (9, 9), $\lambda = (6, 4, 4, 2, 2)$

 \mathcal{O}_{λ} : even nilpotent orbit

 \mathbb{Z} -lattice pts (x_1, x_2, x_3) in $[0,1] \times [0,2] \times [0,2]$

parity cond: none No odd parts!

 $\rightsquigarrow \Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected



Orbit graph for
$$(p, q) = (9, 9)$$
, $\lambda = (6, 4, 4, 2, 2)$

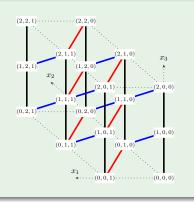
 \mathcal{O}_{λ} : even nilpotent orbit

$$\mathbb{Z}$$
-lattice pts (x_1, x_2, x_3) in $[0, 1] \times [0, 2] \times [0, 2]$

parity cond: none

No odd parts!

 $\rightsquigarrow \Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected



This always happens for even partitions...

→ ∃ generalization

 \mathcal{O}_{λ} is called even if $\forall \lambda_i$'s are all even; or $\forall \lambda_i$'s are all odd

 \mathcal{O}_{λ} is called even if $\forall \lambda_i$'s are all even; or $\forall \lambda_i$'s are all odd

[More intrinsic definition] \cdots Choose $\{e, h, f\}$: \mathfrak{sl}_2 -triple corr to \mathcal{O} \mathcal{O} is even $\stackrel{\mathsf{def}}{\Longleftrightarrow}$ eigenvalues of ad h are all even

 \mathcal{O}_{λ} is called even if $\forall \lambda_i$'s are all even; or $\forall \lambda_i$'s are all odd

[More intrinsic definition] \cdots Choose $\{e, h, f\}$: \mathfrak{sl}_2 -triple corr to \mathcal{O} \mathcal{O} is even $\stackrel{\mathsf{def}}{\iff}$ eigenvalues of ad h are all even

Theorem (even nilpotent orbit)

Consider the symmetric pair $(G, K) = (GL_n, GL_p \times GL_a)$ (n = p + q)

• If \mathcal{O}_{λ} is even, orbit graph $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected

- \mathcal{O}_{λ} is called even if $\forall \lambda_i$'s are all even; or $\forall \lambda_i$'s are all odd
- [More intrinsic definition] \cdots Choose $\{e, h, f\}$: \mathfrak{sl}_2 -triple corr to \mathcal{O} \mathcal{O} is even $\stackrel{\mathsf{def}}{\iff}$ eigenvalues of ad h are all even

Theorem (even nilpotent orbit)

Consider the symmetric pair $(G, K) = (GL_n, GL_p \times GL_q)$ (n = p + q)

- If \mathcal{O}_{λ} is even, orbit graph $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected
- ② If $\exists r \ s.t. \ \lambda_i : odd \ (i < r)$, then $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected λ_i : even (r < i)

- \mathcal{O}_{λ} is called even if $\forall \lambda_i$'s are all even; or $\forall \lambda_i$'s are all odd
- [More intrinsic definition] \cdots Choose $\{e, h, f\}$: \mathfrak{sl}_2 -triple corr to \mathcal{O} \mathcal{O} is even $\stackrel{\mathsf{def}}{\iff}$ eigenvalues of ad h are all even

Theorem (even nilpotent orbit)

Consider the symmetric pair $(G, K) = (GL_n, GL_p \times GL_a)$ (n = p + q)

- If \mathcal{O}_{λ} is even, orbit graph $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected
- ② If $\exists r \ s.t. \ \lambda_i : odd \ (i < r)$, then $\Gamma_K(\mathcal{O}_{\lambda})$ is connected λ_i : even $(r \leq i)$
- **1** These two cases exhaust \mathcal{O}_{λ} with connected orbit graph

- \mathcal{O}_{λ} is called even if $\forall \lambda_i$'s are all even; or $\forall \lambda_i$'s are all odd
- [More intrinsic definition] \cdots Choose $\{e, h, f\}$: \mathfrak{sl}_2 -triple corr to \mathcal{O} \mathcal{O} is even $\stackrel{\text{def}}{\iff}$ eigenvalues of ad h are all even

Theorem (even nilpotent orbit)

Consider the symmetric pair $(G, K) = (GL_n, GL_p \times GL_q)$ (n = p + q)

- If \mathcal{O}_{λ} is even, orbit graph $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected
- ② If $\exists r \ s.t. \ \lambda_i : odd \ (i < r)$, then $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ is connected λ_i : even $(r \leq i)$
- **1** These two cases exhaust \mathcal{O}_{λ} with connected orbit graph

Problem

How to control connected components?

Given a Young diagram $\lambda \vdash n$

Given a Young diagram $\lambda \vdash n$

 \leadsto remove two successive columns of the same length from λ to get λ'

$$\lambda = \longrightarrow \lambda' = \longrightarrow$$

h denotes the height of the columns removed

Given a Young diagram $\lambda \vdash n$

 \rightsquigarrow remove two successive columns of the same length from λ to get λ'

$$\lambda = \longrightarrow \lambda' = \longrightarrow$$

h denotes the height of the columns removed

Lemma

$$\begin{aligned} & (G,K) = (GL_n, GL_p \times GL_q) \\ & (G',K') = (GL_{n-2h}, GL_{p'} \times GL_{q'}) \text{ with } (p',q') = (p-h,q-h) \\ & \Longrightarrow \# \text{ of conn compnts of } \Gamma_{K}(\mathcal{O}_{\lambda}) = \# \text{ of conn compnts of } \Gamma_{K'}(\mathcal{O}'_{\lambda'}) \end{aligned}$$

Given a Young diagram $\lambda \vdash n$

 \leadsto remove two successive columns of the same length from λ to get λ'

$$\lambda =$$
 $\lambda' =$

h denotes the height of the columns removed

Lemma

$$\begin{aligned} & (G,K) = (GL_n, GL_p \times GL_q) \\ & (G',K') = (GL_{n-2h}, GL_{p'} \times GL_{q'}) \text{ with } (p',q') = (p-h,q-h) \\ & \Longrightarrow \# \text{ of conn compnts of } \Gamma_{K'}(\mathcal{O}_{\lambda}) = \# \text{ of conn compnts of } \Gamma_{K'}(\mathcal{O}'_{\lambda'}) \end{aligned}$$

Given a Young diagram $\lambda \vdash n$

 \leadsto remove two successive columns of the same length from λ to get λ'

$$\lambda = \longrightarrow \lambda' = \longrightarrow$$

h denotes the height of the columns removed

Lemma

$$\begin{aligned} (G,K) &= (GL_n,GL_p \times GL_q) \\ (G',K') &= (GL_{n-2h},GL_{p'} \times GL_{q'}) \text{ with } (p',q') = (p-h,q-h) \\ &\implies \# \text{ of conn compnts of } \Gamma_K(\mathcal{O}_\lambda) = \# \text{ of conn compnts of } \Gamma_{K'}(\mathcal{O}'_{\lambda'}) \end{aligned}$$

This also works for signed Young diagram $T \in SYD(\lambda; p, q)$

$$\Phi: \mathsf{SYD}(\lambda; p, q) \to \mathsf{SYD}(\lambda'; p-h, q-h)$$

Graph Induction

$$Z'\subset \mathsf{SYD}(\lambda';p',q')$$
: subgraph of $\Gamma_{\mathsf{K}'}(\mathcal{O}')$ (Identify set of vertices with full subgraph)

Graph Induction

$$Z' \subset \mathsf{SYD}(\lambda'; p', q')$$
: subgraph of $\Gamma_{\mathsf{K}'}(\mathcal{O}')$ (Identify set of vertices with full subgraph)

Definition

Graph induction of Z' is defined to be

$$\operatorname{g-ind}_{(G',K')}^{(G,K)}(Z') = \operatorname{g-ind}(Z') = \bigcup_{T' \in Z'} \Phi^{-1}(T')$$

Graph Induction

$$Z' \subset \mathsf{SYD}(\lambda'; p', q')$$
: subgraph of $\Gamma_{\mathsf{K}'}(\mathcal{O}')$ (Identify set of vertices with full subgraph)

Definition

Graph induction of Z' is defined to be

$$\operatorname{g-ind}_{(G',K')}^{(G,K)}(Z') = \operatorname{g-ind}(Z') = \bigcup_{T' \in Z'} \Phi^{-1}(T')$$

Example

$$(p,q) = (8,7), (p',q') = (3,2); \quad \lambda' = (2^2,1) \subset \lambda = (4^2,3,2^2)$$

$$T' = \bigoplus_{i=1}^{n+1} \in SYD(\lambda';3,2) \rightsquigarrow g-ind(T') \subset SYD(\lambda;8,7)$$

Graph Induction

$$Z' \subset \mathsf{SYD}(\lambda'; p', q')$$
: subgraph of $\Gamma_{\mathsf{K}'}(\mathcal{O}')$ (Identify set of vertices with full subgraph)

Definition

Graph induction of Z' is defined to be

$$\operatorname{g-ind}_{(G',K')}^{(G,K)}(Z') = \operatorname{g-ind}(Z') = \bigcup_{T' \in Z'} \Phi^{-1}(T')$$

Example

$$(p,q)=(8,7), (p',q')=(3,2); \quad \lambda'=(2^2,1)\subset \lambda=(4^2,3,2^2)$$

$$\mathcal{T}' = \varinjlim \in \mathsf{SYD}(\lambda';3,2) \leadsto \mathsf{g-ind}(\mathcal{T}') \subset \mathsf{SYD}(\lambda;8,7)$$

- ◆□▶ ◆@ ▶ ◆돌▶ ◆돌▶ · 돌 · 쒸٩@

$$(p,q) = (7,5), (p',q') = (4,2); \quad \lambda' = (2,1^4) \subset \lambda = (4,3^2,1^2)$$

$$T' = \begin{array}{c} +1 \\ +1 \\ +1 \\ +1 \end{array} \in SYD(\lambda';4,2) \rightsquigarrow g-ind(T') \subset SYD(\lambda;7,5)$$

$$g-ind(T') = \underbrace{+-+}_{+-+}$$

$$(p,q) = (7,5), (p',q') = (4,2); \quad \lambda' = (2,1^4) \subset \lambda = (4,3^2,1^2)$$

$$T' = \begin{array}{c} +1 \\ +1 \\ +1 \\ -1 \end{array} \in SYD(\lambda';4,2) \rightsquigarrow g-ind(T') \subset SYD(\lambda;7,5)$$

Theorem

g-ind establishes a bijection between connected components

オロトオ部トオミトオミト ミ めのぐ

$$(p,q) = (7,5), (p',q') = (4,2); \quad \lambda' = (2,1^4) \subset \lambda = (4,3^2,1^2)$$

$$T' = \begin{array}{c} + \\ + \\ + \\ - \end{array} \in SYD(\lambda';4,2) \rightsquigarrow g-ind(T') \subset SYD(\lambda;7,5)$$

Theorem

g-ind establishes a bijection between connected components

$$Z' \subset \Gamma_{K'}(\mathcal{O}'_{\lambda'})$$
 : conn compnt
 \implies g-ind $(Z') \subset \Gamma_{K}(\mathcal{O}_{\lambda})$: conn compnt

$$X$$
 : irred HC (\mathfrak{g}, K) -module

$$\mathcal{AV}(X) = \bigcup_{i=1}^{r} \overline{\mathbb{O}}_{i}$$
: associated variety $\mathcal{AV}(\operatorname{Ann}(X)) = \overline{\mathcal{O}}_{\lambda}$: *G*-orbit corr to *X*

$$X$$
: irred HC (\mathfrak{g}, K) -module

$$\mathcal{AV}(X) = \bigcup_{i=1}^{r} \overline{\mathbb{O}}_{i}$$
: associated variety $\mathcal{AV}(\operatorname{Ann}(X)) = \overline{\mathcal{O}}_{\lambda}$: *G*-orbit corr to *X*

Definition

Associated graph of X denoted as $\mathcal{AV}^{\Gamma}(X)$

· · · full subgraph in $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ with vertices $\{\mathbb{O}_i \mid 1 \leq i \leq r\}$ those contribute to $\mathcal{AV}(X)$ as irred computs

$$X$$
 : irred HC (\mathfrak{g}, K) -module

$$\mathcal{AV}(X) = \bigcup_{i=1}^{r} \overline{\mathbb{O}}_{i}$$
: associated variety $\mathcal{AV}(\operatorname{Ann}(X)) = \overline{\mathcal{O}}_{\lambda}$: *G*-orbit corr to X

Definition

Associated graph of X denoted as $\mathcal{AV}^{\Gamma}(X)$

· · · full subgraph in $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ with vertices $\{\mathbb{O}_i \mid 1 \leq i \leq r\}$ those contribute to $\mathcal{AV}(X)$ as irred computs

Natural question:

- What kind of subgraph is $\mathcal{AV}^{\Gamma}(X)$?
- Can it be any subgraph?

$$X$$
 : irred HC (\mathfrak{g}, K) -module

$$\mathcal{AV}(X) = \bigcup_{i=1}^{r} \overline{\mathbb{O}}_{i}$$
: associated variety $\mathcal{AV}(\operatorname{Ann}(X)) = \overline{\mathcal{O}}_{\lambda}$: *G*-orbit corr to *X*

Definition

Associated graph of X denoted as $\mathcal{AV}^{\Gamma}(X)$

· · · full subgraph in $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$ with vertices $\{\mathbb{O}_i \mid 1 \leq i \leq r\}$ those contribute to $\mathcal{AV}(X)$ as irred computs

Natural question:

- What kind of subgraph is $\mathcal{AV}^{\Gamma}(X)$?
- Can it be any subgraph?

Almost Theorem

If X is an irreducible HC-module, associated graph $\mathcal{AV}^{\Gamma}(X)$ is a connected subgraph of $\Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$

 $\mathcal{O} \subset \mathfrak{g}$: even nilpotent G-orbit

- $\mathcal{O} \subset \mathfrak{g}$: even nilpotent G-orbit
 - **1** Orbit graph $\Gamma_K(\mathcal{O})$ is connected

- $\mathcal{O} \subset \mathfrak{g}$: even nilpotent G-orbit
 - **1** Orbit graph $\Gamma_{K}(\mathcal{O})$ is connected
 - ② $\exists X : irreducible \ HC\text{-}module \ s.t. \ \Gamma_{\mathsf{K}}(\mathcal{O}) = \mathcal{AV}^{\mathsf{\Gamma}}(X)$ $\therefore \quad \mathcal{AV}(X) = \overline{\mathcal{O} \cap \mathfrak{s}}$

In fact, we can take $X = (deg \ principal \ series)$ corr to parabolic subgrp whose Richardson orbit is \mathcal{O}

 $\mathcal{O}\subset\mathfrak{g}$: even nilpotent G-orbit

- **1** Orbit graph $\Gamma_{K}(\mathcal{O})$ is connected
- ② $\exists X : irreducible \ HC\text{-}module \ s.t. \ \Gamma_{\mathsf{K}}(\mathcal{O}) = \mathcal{AV}^{\mathsf{\Gamma}}(X)$ $\therefore \quad \mathcal{AV}(X) = \overline{\mathcal{O} \cap \mathfrak{s}}$

In fact, we can take $X = (deg \ principal \ series)$ corr to parabolic subgrp whose Richardson orbit is \mathcal{O}

Example
$$G_{\mathbb{R}} = U(n, n)$$

$$P_{\mathbb{R}}=\mathsf{GL}_n(\mathbb{C})\ltimes N_{\mathbb{R}}$$
 $\pi_{
u}=\mathsf{Ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}|\det|^{
u}:\mathsf{deg}\;\mathsf{principal}\;\mathsf{series}$

$$\rightsquigarrow \mathcal{AV}^{\Gamma}(\pi_{\nu}) = \begin{array}{c} +1 \\ +1 \\ +1 \end{array} - \begin{array}{c} +1 \\ -1 \end{array} - \begin{array}{c} +1 \\ -1 \end{array} - \begin{array}{c} -1 \\ -1 \end{array}$$

Maximally connected subgraph \cdots connected computs of $\Gamma_{K}(\mathcal{O})$

Maximally connected subgraph \cdots connected computs of $\Gamma_{\kappa}(\mathcal{O})$

Keep considering type AIII

$$G = \operatorname{\mathsf{GL}}_n \supset K = \operatorname{\mathsf{GL}}_p \times \operatorname{\mathsf{GL}}_q \ (n = p + q) \longleftrightarrow G_{\mathbb{R}} = \operatorname{\mathsf{U}}(p,q)$$

Maximally connected subgraph \cdots connected computs of $\Gamma_K(\mathcal{O})$

Keep considering type AIII

$$G = \mathsf{GL}_n \supset K = \mathsf{GL}_p imes \mathsf{GL}_q \ (n = p + q) \longleftrightarrow G_\mathbb{R} = \mathsf{U}(p,q)$$

Theorem (type AIII)

 $\mathcal{O} \subset \mathfrak{g}$: nilpotent G-orbit

 $\forall Z \subset \Gamma_K(\mathcal{O})$: conn component

 $\implies \exists X : HC\text{-module } s.t. Z = \mathcal{AV}^{\Gamma}(X)$

Maximally connected subgraph \cdots connected computs of $\Gamma_{\kappa}(\mathcal{O})$

Keep considering type AIII

$$G = \mathsf{GL}_n \supset \mathcal{K} = \mathsf{GL}_p imes \mathsf{GL}_q \ \ (n = p + q) \longleftrightarrow G_{\mathbb{R}} = \mathsf{U}(p,q)$$

Theorem (type AIII)

 $\mathcal{O} \subset \mathfrak{q}$: nilpotent G-orbit

 $\forall Z \subset \Gamma_{\mathsf{K}}(\mathcal{O}) : conn component$

 $\implies \exists X : HC$ -module s.t. $Z = \mathcal{AV}^{\Gamma}(X)$

How to produce such HC-module X?

Keep considering type AIII

$$G = \operatorname{\mathsf{GL}}_n \supset K = \operatorname{\mathsf{GL}}_p imes \operatorname{\mathsf{GL}}_q \ (n = p + q) \longleftrightarrow G_\mathbb{R} = \operatorname{\mathsf{U}}(p,q)$$

Theorem (type AIII)

 $\mathcal{O} \subset \mathfrak{g}$: nilpotent G-orbit

 $\forall Z \subset \Gamma_{\mathsf{K}}(\mathcal{O})$: conn component

 $\implies \exists X : HC$ -module s.t. $Z = \mathcal{AV}^{\Gamma}(X)$

How to produce such HC-module *X*?

Key fact due to Barbasch-Vogan

 $\forall \mathbb{O} : K$ -orbit in \mathfrak{s}

 $\exists X_{\mathbb{O}}$: irred derived functor module s.t. $\mathcal{AV}(X_{\mathbb{O}}) = \overline{\mathbb{O}}$

Recall λ and $\lambda' \leadsto$ remove two successive columns of the same length h from λ to get λ'

$$n' = n - 2h, \quad (p', q') = (p - h, q - h)$$

 $(G', K') = (GL_{n'}, GL_{p'} \times GL_{q'})$

Recall λ and $\lambda' \leadsto \text{remove two successive columns of the same length } h \text{ from } \lambda \text{ to get } \lambda'$

$$\lambda = \longrightarrow \lambda' = \longrightarrow$$

Put
$$n' = n - 2h, \quad (p', q') = (p - h, q - h)$$

 $(G', K') = (GL_{n'}, GL_{p'} \times GL_{q'})$

$$P_\mathbb{R}$$
 : \mathbb{R} -psg of $G_\mathbb{R}=U(p,q)$ s.t. $P_\mathbb{R}\simeq (U(p',q') imes GL_h(\mathbb{C}))\ltimes extsf{N}_\mathbb{R}$

Recall λ and $\lambda' \leadsto$ remove two successive columns of the same length h from λ to get λ'

$$\lambda = \longrightarrow \lambda' = \longrightarrow$$

Put
$$n' = n - 2h, \quad (p', q') = (p - h, q - h)$$

 $(G', K') = (GL_{n'}, GL_{p'} \times GL_{q'})$

 $P_{\mathbb{R}}: \mathbb{R}$ -psg of $G_{\mathbb{R}}=U(p,q)$ s.t.

$$P_{\mathbb{R}} \simeq (U(p',q') \times GL_h(\mathbb{C})) \ltimes N_{\mathbb{R}}$$

Graph induction brings

conn comp of $\Gamma_{K'}(\mathcal{O}_{\lambda'}) \to \text{conn comp of } \Gamma_{K}(\mathcal{O}_{\lambda})$

$$\lambda = \longrightarrow \lambda' =$$

Put
$$n' = n - 2h, (p', q') = (p - h, q - h)$$

 $(G', K') = (GL_{n'}, GL_{p'} \times GL_{q'})$

$$P_\mathbb{R}$$
 : \mathbb{R} -psg of $G_\mathbb{R}=U(p,q)$ s.t. $P_\mathbb{R}\simeq (U(p',q') imes GL_h(\mathbb{C}))\ltimes N_\mathbb{R}$

- Graph induction brings $\operatorname{conn} \operatorname{comp} \operatorname{of} \Gamma_{\mathsf{K}'}(\mathcal{O}_{\lambda'}) \to \operatorname{conn} \operatorname{comp} \operatorname{of} \Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$
- Parabolic induction brings ass var of (\mathfrak{g}', K') -module \to ass var of (\mathfrak{g}, K) -module

Recall λ and $\lambda' \leadsto$ remove two successive columns of the same length h from λ to get λ'

Put
$$n' = n - 2h, \quad (p', q') = (p - h, q - h)$$

 $(G', K') = (GL_{n'}, GL_{p'} \times GL_{q'})$

$$P_\mathbb{R}$$
 : \mathbb{R} -psg of $G_\mathbb{R}=U(p,q)$ s.t. $P_\mathbb{R}\simeq (U(p',q') imes GL_h(\mathbb{C}))\ltimes extsf{N}_\mathbb{R}$

- Graph induction brings $\operatorname{conn} \operatorname{comp} \operatorname{of} \Gamma_{\mathsf{K}'}(\mathcal{O}_{\lambda'}) \to \operatorname{conn} \operatorname{comp} \operatorname{of} \Gamma_{\mathsf{K}}(\mathcal{O}_{\lambda})$
- Parabolic induction brings $\text{ass var of } (\mathfrak{g}',K')\text{-module} \to \text{ass var of } (\mathfrak{g},K)\text{-module}$

In fact they match up!

$$(G, K) = (GL_n, GL_p \times GL_q)$$
 $(G, K) = (GL_{n'}, GL_{p'} \times GL_{q'})$
 $G_{\mathbb{R}} = U(p, q)$
 $P_{\mathbb{R}} \simeq (U(p', q') \times GL_h(\mathbb{C})) \ltimes N_{\mathbb{R}}$: psg of $G_{\mathbb{R}}$

$$(G,K) = (GL_n, GL_p \times GL_q)$$
 $(G,K) = (GL_{n'}, GL_{p'} \times GL_{q'})$
 $G_{\mathbb{R}} = U(p,q)$
 $P_{\mathbb{R}} \simeq (U(p',q') \times GL_h(\mathbb{C})) \ltimes N_{\mathbb{R}}$: psg of $G_{\mathbb{R}}$

For
$$X': HC(\mathfrak{g}',K')$$
-module , put
$$X(\nu) := \operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}} X' \otimes |\det|^{\nu} : \operatorname{\textit{parabolic induction}}$$
 Then $\mathcal{AV}^{\Gamma}(X(\nu))) = \operatorname{\textit{g-ind}} \mathcal{AV}^{\Gamma}(X')$ holds

$$\begin{split} (G,K) &= (GL_n,GL_p\times GL_q) \quad (G,K) = (GL_{n'},GL_{p'}\times GL_{q'}) \\ G_{\mathbb{R}} &= U(p,q) \\ P_{\mathbb{R}} &\simeq (U(p',q')\times GL_h(\mathbb{C})) \ltimes N_{\mathbb{R}} : \text{psg of } G_{\mathbb{R}} \end{split}$$

For
$$X': HC(\mathfrak{g}',K')$$
-module , put
$$X(\nu) := \operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}} X' \otimes |\det|^{\nu}: \operatorname{\textit{parabolic induction}}$$
 Then
$$\mathcal{AV}^{\Gamma}(X(\nu))) = \operatorname{\textit{g-ind}} \mathcal{AV}^{\Gamma}(X') \quad \operatorname{\textit{holds, i.e. we have}}$$

$$\mathcal{AV}^{\Gamma}(\operatorname{\textit{ind}}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(X' \otimes |\det|^{\nu})) = \operatorname{\textit{g-ind}}_{(G',K')}^{(G,K)}(\mathcal{AV}^{\Gamma}(X'))$$

$$(G,K) = (GL_n, GL_p \times GL_q)$$
 $(G,K) = (GL_{n'}, GL_{p'} \times GL_{q'})$
 $G_{\mathbb{R}} = U(p,q)$
 $P_{\mathbb{R}} \simeq (U(p',q') \times GL_h(\mathbb{C})) \ltimes N_{\mathbb{R}}$: psg of $G_{\mathbb{R}}$

For
$$X': HC(\mathfrak{g}',K')$$
-module , put
$$X(\nu) := \operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}} X' \otimes |\det|^{\nu}: \operatorname{\textit{parabolic induction}}$$
 Then
$$\mathcal{AV}^{\Gamma}(X(\nu))) = \operatorname{\textit{g-ind}} \mathcal{AV}^{\Gamma}(X') \quad \operatorname{\textit{holds, i.e. we have}}$$

$$\mathcal{AV}^{\Gamma}(\operatorname{\textit{ind}}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(X' \otimes |\det|^{\nu})) = \operatorname{\textit{g-ind}}_{(G',K')}^{(G,K)}(\mathcal{AV}^{\Gamma}(X'))$$

Starting from

- totally disconnected graph and
- an irred HC-module $X_{\mathbb{O}}$ attached to single \mathbb{O}

4□ > 4□ > 4 = > 4 = > = 90

$$\begin{split} &(G,K) = (GL_n,GL_p \times GL_q) \quad (G,K) = (GL_{n'},GL_{p'} \times GL_{q'}) \\ &G_{\mathbb{R}} = \textit{U}(p,q) \\ &P_{\mathbb{R}} \simeq (\textit{U}(p',q') \times GL_h(\mathbb{C})) \ltimes \textit{N}_{\mathbb{R}} : \text{psg of } G_{\mathbb{R}} \end{split}$$

For
$$X': HC(\mathfrak{g}',K')$$
-module , put
$$X(\nu) := \operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}} X' \otimes |\det|^{\nu}: \operatorname{\textit{parabolic induction}}$$
 Then
$$\mathcal{AV}^{\Gamma}(X(\nu))) = \operatorname{\textit{g-ind}} \mathcal{AV}^{\Gamma}(X') \quad \operatorname{\textit{holds, i.e. we have}}$$

$$\mathcal{AV}^{\Gamma}(\operatorname{\textit{ind}}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(X' \otimes |\det|^{\nu})) = \operatorname{\textit{g-ind}}_{(G',K')}^{(G,K)}(\mathcal{AV}^{\Gamma}(X'))$$

Starting from

- totally disconnected graph and
- an irred HC-module $X_{\mathbb{O}}$ attached to single \mathbb{O}

we can thus construct

•
$$X$$
: HC-module with $\mathcal{AV}^{\Gamma}(X) = (\text{conn comp of } \Gamma_{K}(\mathcal{O}))$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Thank you for your attention!!