Steinberg variety and moment maps
over multiple flag varieties Il
—joint work with Hiroyuki Ochiai

Kyo Nishiyama
Dept. Mathematics, Aoyama Gakuin Univ.

2010 Nankai Summer School on Representation Theory and Harmonic Analysis

June 5 - 11, 2010
Chern Institute of Mathematics, Nankai University

Kyo Nishiyama (AGU) Multiple Flag Variety 2010/06/11 1/27



. Plan]
Plan of talk

© Motivation & Problems

Q@ Multiple flag variety (= MFV) in classical cases

Introduce classification of MFV by Magyar-Weymann-Zelevinsky for

type A

Discuss relation to spherical actions, and more results on other types
© Double flag variety for symmetric pair

Introduce double flag variety

Establish criterions for finiteness of orbits

Discuss representation theoretic meaning of finiteness of orbits

Q Steinberg theory for MFV
Describe moment maps and nilpotent varieties

© Example : U(2,2)
Give complete classification of orbits
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Multiple flag variety, problems

Problems

G : algebraic group / C B C G : Borel subgrp
G™¥X=G/BxG/B ~ Steinberg theory (1st Talk)

How to generalize it?

@ B : Borel ~~» P: parabolic

well studied including the case of KGP

(cf Ciubotaru-Trapa-N, arXiv:0903.1039v1 [math.RT])
@ Try several copies X = G/P1xG/Pyx ... xG/Px

Almost complete results for classical cases (explained later)
@ View point of symmetric pairs

Only a first step, not so much progress now ...
But this is our main topic today
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HEE
Multiple flag variety for type A
G = GL, = GL,(C) : general linear group

P C G : parabolic subgrp <= X € %(n): composition
(up to conjugate)
(composition = unordered partition)

For A = (A1, A2,..., A\p) € €(n)

GLa, E S

U

partial flag .#\ = (Fx)o<k<¢ of subspaces
FobCcHCFRC---CF st. dimFr=X+ X+ -4+ A
—> P, = Stabg(.%),) : Stabilizer of flag
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Eypely
Notation Xp = G/P : partial flag variety

Theorem (Magyar-Weymann-Zelevinsky (G = GL,))
Q For P1,..., Py : proper parabolics, #G\(Xp, xXp,x -+ xXp,) < 00
— k <3.
Q Xp, xXp, xXp, is of finite type <= it is in the table below

type
Sq,r

Dr+2

—~~
()
—~
>
~—
()
—
=
~—
()
—~
<
~—
~—

extra condition(s)
A=(n-1,1)

A=(n—-2,2) (n>4)
n= (NI;NZ;]')

In
A~ N N AN S S
N N DMNNDDNDNDDN

(with possible changes of order of the factors in each A, i, v)
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MFV in the classical case Remark on spherical variety

Some remarks in order

#G\(:{PIX%[DZX o900 X%pk) < o0
@ k=1: Xp is homogeneous
@ k=2: G\(%pIX%pz) Pl\G/P2 WPI\VV/VVP2 : Bruhat
decomposition
Notation: Wp : Weyl group of P (or its Levi)

Littelmann classified Xp, xXp, xXp, of finite type
when Py, Py : max parabolic & P; = B : Borel [J. ALg. (1994)]
#G\(Xp, xXp,xXp) <00 <= #B\(Xp xXp,) <00
<= Xp,xXp, is G-spherical
P; <+ w; (i =1,2) : fundamental weight
Xp, xXp, is G-spherical

= Vikw, ® Vi, decomposes multiplicity freely
as G-module (Vk,?¢ > 0)
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MFV in the classical case Summary of classification

Summary of classification

@ Magyar-Weymann-Zelevinsky classified MFV of finite type
for type A & type C (not intoroduced here)
They also classified orbits
[Adv. Math. 141 (1999); J. Algebra 230 (2000)]
@ For type B & D, MWZ claims complete classification, but
no explicit table available
@ For exceptional groups, 3 result by Popov:

classification of triple flag varieties with open orbit
[J. ALg. 313(2007)]

Existence of open orbit is necessary for finite type,
but it does NOT imply finiteness of orbits
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Mirabolic (= miraculous parabolic) case

For type A, 3 special wonderful case called mirabolic
G=GL, D> B: Borel & P =P(,_y;): max parabolic (mirabolic)

XpxXpxXp >~ Flyx Fl,xP(C")

For this, there are many good properties known due to
Travkin, Finkelberg-Ginzburg-Travkin, Achar-Henderson, Syu Kato, ...

@ Analogue of Robinson-Schensted-Knuth algorithm for Springer fiber
micro-local cells and action of Hecke algebra, etc.

@ Enhanced nilpotent cone and orbits on N (g)xC”",
local intersection theory (IC complexes) on the closure of nilpotent
orbits

@ Exotic nilpotent cone and orbits,

Springer representations for BC-type Weyl group, Kazhudan-Lusztig
theory, ...
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Double flag variety —definition

G : reductive alg grp /C
# € Aut G : involution
~ K = G’ : symmetric subgrp (= C-fication of max cpt subgrp)

P : parabolic & P’ : f-stable parabolic of G
~ @ := P'N K : parabolic of K

Remark
For VQ C K : parabolic, 3 P’ C G : 0-stable parabolic s.t. Q = PPN K

v

Notation

Xp:= G/P : partial flag var & X% := Xop) = G/0(P)
2o = K/Q : partial flag for K

XpxZq : double flag variety “ K acts diagonally
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Relation to MFV for G

Remark

Q Triple flag variety Xp, xXp,xXp, with diag G-action is a special case
of double flag variety XpxZ¢g with K-action

(. Take G= GxG and K = AG as usual)
Q@ Zo~K-P/P = %, ie Zgisa closed K-orbit in K\Xpr
Thus we get a closed embedding:
XpxZg ¢ dosed . xpxXp with diag K-action

In general  #K\(XpxXp') =00 however
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Double flag variety for symmetric pair Criterion for finiteness

Finiteness of orbits

Theorem (N-Ochiai)
#G\(XpxXhxXp) <00 = #K\(XpxZq) < 00

Corollary

P : parabolic in G
%px%fp : G-spherical variety —> Xp : K-spherical variety

Proof of Corollary.
d B : O-stable Borel s.t. S := K N B is Borel for K
%px%f; : G-spherical variety
— #B\(XpxX) <00 <= #G\(XpxXLxXg) < o0

Theorem, 4 K\(G/PxK/S) < 0o <= #5\G/P < o0 O
<= Xp = G/P is K-spherical
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Double flag variety for symmetric pair Spherical variety and MF action

Representation theoretic meaning of Corollary (1)

AT : positive roots D 1 : simple roots D ® : subset (parabolic data)
Define A=) coWa (wa : fund weight < )

V) : finite dim irred rep 3 v, : highest weight vector

P={geG|g-vy€Cvy}: parabolic <— & CTl
[va] € P(V)\) : proj space ~» Xp ~ G -[vy]

f%p := Gvy C V), : affine cone /Xp called highest weight variety
~ C[.%p] >~ @ Vg)\ &
>0
(C[.%p X%g(P)] ~ @ Vi ® Ve
k(>0

: multiplicity free (= MF) decomposition
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Representation theoretic meaning of Corollary (2)

Lemma
Q Xp is K-spherical <= Vj\|k (V€ > 0) is a MF K-module
o %px%% is G-spherical
= Vin® Vpye (Vk,€>0) is a MF G-module

Proof of (1).

Xp is K-spherical <= Xp is CX x K-spherical
<= ([Xp] is a MF (C* xK)-module
< Vilk (V€ >0)isa MF K-module O

Corollary
Vi ® Vippe (Yk,€ > 0) decomposes MF as a G-module

= Vmilk (Ym > 0) decomposes MF as a K-module
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How to prove Theorem?

Theorem (mentioned above, quoted again)

#G\(%pX%%X%pr) <0 — #K\(%pXZQ) < 00 J

P'=G = @ = K and theorem reduces to the well-known
#K\G/P < o0 (Wolf, Matsuki, Rossmann, Springer, ...)

3 beautiful proof by Mili¢i¢ in his lecture note, available online
~» Apply his idea to K\(Xpx Zq)
Key idea: 6-twisted diagonal embedding:
Ng:XpDP1— (Pl,H(Pl)) € xPX%?g
XpxZg — Dg(Xp)xZg — Do(Xp)xXp C XpxXhxXpr
Ap-twisted action gives Bruhat decomposition:
Ag(G)\(Ag(%p)X%p/) ~ G\(%px.}:p/) ~ Wp\W/Wp/
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Double flag variety for symmetric pair Proof of Theorem

Proof of Theorem.
Pick Ag(G)-orbit 0% € Ag(G)\(Lg(Xp)xXp)  (w € Wp\W/Wpi)

Lemma (Key Lemma)
YO € G\(%P X%?DX%PI), X = Ag(%P)XZQ
Q@ #K\(ONO? NX) < oo

QONONX= I_Ifle@,- : K-orbit decomposition
—> @ is a connected component of O N 0% N X

Let us assume the above lemma. Since

@ decomposition X = Uyew,\w/w,, 0% N X is finite
@ finitely many G-orbits O in %px%%x%p: by the assumption
we conclude that #K\X = #K\(XpxZg) < oo.
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Double flag variety for symmetric pair Another technique: embedding of flag varieties

Theorem does not exhaust double flag variety of finite type
Introduce another technique, which can produce more examples.

Key idea
Embed G/Q into G/P,xG/P5 : product of (partial) flag varieties J

A generalization of Harish-Chandra embedding:
G/K —— (product of flag varieties)

Example (Classical Harish-Chandra embedding)

Assume K = P N P° for P parabolic and its opposite P°
~ G/K > gK — (gP,gP°) € XpxXpo : open embedding

Thus we get:
B\G/K — B\(XPXXPO) () G\(%B X%pX%pO)

#B\G/K < 0o <= Jopen B-orbit <= #B\(XpxXpo) < o0
— #G\(XpxXpxXpo) < 00

v
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Double flag variety for symmetric pair Another technique: embedding of flag varieties

Suggests simpler & easier criterion of #K\(XpxZg) < 00
Proposition
P; (i = 1,2,3) : parabolic subgrp of G satisfying

Q@ Q := P,N P53 is a parabolic of K

9 #G\(%PIX%%X%P?') < o0
- #K\(XPIXZQ) < 00

Proof.

By (1), 3 diag embedding G/Q — Xp,xXp,; g Q — (gP2,8P3)
From this:

K\(Xp, xZq) = P1\G/Q
= G\(Xp, xG/Q) —— G\(Xp, xXp,xXp,)
By (2), #G\(Xp, xXp,xXp,;) < 00 [
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Double flag variety for symmetric pair Table of MFVs

MFV of finite type

(type A)

Tables

Type Al : G/K =SL,/SO, (n>3)

P Q Xp Zo extra condition
maximal any | Grass,(C") 24
(A1, A2, A3) | Siegel Xp LGrass(C") n is even
Type All : G/K =SL3,/Sp,, (n > 2)
P Q Xp ZQ
maximal any | Grass,(C") 20
(A1, A2, A3) | Siegel Xp LGrass,(C?")
Type Alll : G/K = GLn/GL,xGLg (n=p+ q)
P & @ Xp 29
any mirabolic GL, Xp P(CP)
any GL, mirabolic Xp P(C9)
maximal any any Grassp,(C™) 29
(A1, A2, A3) | maximal  maximal Xp Grassk (CP)x Grassy(C9)
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Steinberg variety for MFV Moment maps

Moment maps

X :=XpxZq* " K : diag K-action
Want to apply Steinberg theory to K\ X:

T*X = T*XpXx T*ZQ > ((p',f),(q',n))
J/uxp XBZqo I
W\ g X > (&n)
p* > fle+m

pxp(T*Xp) = G-up = ﬁ—g C N(g) : Richardson orbit for P
pzo(T*2Q) = K-uq = ﬁ_g C N(®) : Richardson orbit for Q
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Steinberg variety for MFV X = Xpx Z

Sx = u;(l(O) = U@)GK\ THX © Steinberg variety

Notation:  x?:= 3(x +0(x)) € ¢ gox «— ¢ egt
XV o Ee

(/P xpkQ)(Sx)
={(xy)eaxt|xeOF, ye0f, 5(x+0(x)+y=0}
:{(x,—xa)EgXHxEﬁ’—g, Xaeﬁg}

~{xeg|xe o8, x'c0of}

Definition
Nxpxzq ={x€g|x€ ﬁg,xe € 0’5}

. nilpotent variety for double flag variety
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Steinberg variety for MFV Questions

Nxpxzo ={x€glx€ ﬁ—g, x? ¢ ﬁ—g} . nilpotent variety
Naive questions
Q #K\Nx,xzo < 007 [Answer : NO]J

© Geometric structure of K-stable, irreducible closed subvariety
(/XK @(TEX) = Nxpxzo(0)?

© Geometric cells on K\XpxZg? Closure relations etc.

© How it can be related to representation theory?

We give an easiest example in type A
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Example : U(2,2) BEEELE

U(2,2)
G = GL4(C) D K = GLy(C) x GLy(C)
vV =C* V=Vvtov- VE = (2

P = P(;2) : max parabolic in G
Q = @ x @ : product of Borel subgrps of GL(V*)

~ XpxZg = (GL,/P)x(GLy/B)x(GL2/B)
~ Grassy(C*) xIP(C?)xP(C?) > (L, p1, p2)
Thus we have
@ In the whole projective space P(C*) = P(V) of dim = 3
@ Two separate lines [V*] which determines the symmetric pair G/K
© One line L € Grassy(C*)
© Two pints p1, p2 in Grassy(V 1) and Grassy(V ™) respectively

K\XpxZg <— configurations of (L, p1, p2) inside P(V) J
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i aif clerazes

v=cCt V=VvteVv- dim V+ =2
(LcV,ppC VT, ppC V™) st.dmL=2 dimp; =dimp, =1
Lemma

©Q Configurations (L, p1, p2) inside V are classified by dimensions

(t )= (dimLN VT dmLN V™)
[ wtw ] =[dim LN (p1 & p2);dim L N py,dim L N po]
up to K = GLy x GLy conjugacy
Q #K\XPXZQ =14

Remark
Lemma is misleading but instructive in the sense:
@ Need more dimensions for U(p, q)

@ More dimensions seem to be enough for U(p, q) and general Q
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Pz
Projection to K\ G/P
proj : XpxZgp — Xp : K-equivariant (forget Q)
Figure : K\ G/P parametrized by (¢*,¢7) = (dimLN VT, dmLN V")

) E 4 1 closed

(2,0) (1,1) (0,2)

2 open

n: # of fibers of proj : K\XpxZg — K\Xp
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Example : U(2,

)

Grassy(C*) x P(C?) x P(C2) (1)
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Example : U(2,2)

Grass,(C4) x P(C2) x P(C2) (1)
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End of Lectures

Thank you!!
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