## 旗多様体上の軌道と表現

Orbits on Flag Varieties and Representation Theory: An Overview

Thanks to all joint researchers

Kyo Nishiyama (西山 享) AGU (青山学院大学理工)

2025 日本数学会秋季総合分科会 2025 年 9 月 18 日 (木) 名古屋大学東山キャンパス

#### Abstract

旗多様体について基礎的な性質や事項を紹介した後,旗多様体と表現論や組合 せ論との関わりについて概観する.後半では,近年研究を進めている二重旗多 様体について得られた成果を報告する.

二重旗多様体の研究は,落合啓之氏との共著論文 (2011) によって始まったものである.

# はじめての旗多様体: Flag variety/ Flag manifold

旗多様体 (flag variety/ flag manifold) は表現論のいたるところに現れる

基本事項を手短にまとめておこう. 以下,複素数体  $\mathbb C$  (または  $\mathbb R$ ) 上で考える.

G: 連結簡約代数群 /C (connected reductive alg grp)

### Example

 $G = \mathrm{GL}_n(\mathbb{C}), \mathrm{SL}_n(\mathbb{C}), \mathrm{SO}_n(\mathbb{C}), \mathrm{Sp}_{2n}(\mathbb{C})$  (古典群),例外型群

#### **Definition**

旗多様体 X = 簡約代数群の等質空間 & 射影多様体 (flag variety/manifold)

X = G/P (P: 放物型部分群 (psg = parabolic subgroup))

たとえば (n-1) 次元の射影空間  $\mathbb{P}^{n-1}(\mathbb{C})=\mathbb{P}(\mathbb{C}^n)$  は旗多様体の一種である.

#### Remark

旗多様体 = 完全旗多様体のことが多い. 上の定義は部分旗多様体.

# 例: Projective space and Grassmannians

$$G \cap V = \mathbb{C}^n$$
 w 射影空間  $\mathbb{P}(V)$  上の推移的な作用

Example (射影空間  $\mathbb{P}(V)$ / projective space)

 $E_1 = \langle e_1 \rangle$  の固定部分群  $(e_1: 基本ベクトル)$ :

$$\mathsf{Stab}_{G}(E_{1}) = P_{(1,n-1)} = \left\{ g = \begin{pmatrix} a & * \\ 0 & b \end{pmatrix} \in \mathsf{GL}_{n}(\mathbb{C}) \;\middle|\; a \in \mathbb{C}^{\times}, \, b \in \mathsf{GL}_{n-1}(\mathbb{C}) \right\}$$

$$\mathcal{L}$$
  $\mathbb{P}(V)\simeq \mathrm{GL}_n(\mathbb{C})/P_{(1,n-1)}$ : 射影空間はコンパクト等質多様体  $=$  旗多様体

## Example (Grassmann 多様体 $Gr_d(V)$ / Grassmannian)

Grassmann 多様体: 
$$\mathrm{Gr}_d(V)=\{V=\mathbb{C}^n\ {m O}\ d\ 次元部分空間の全体 \}$$
  $\simeq \mathrm{GL}_n(\mathbb{C})/{\mbox{\it P}}_{(d,n-d)}$ 

$$P_{(d,n-d)}\subset \mathrm{GL}_n(\mathbb{C})$$
: ブロックが  $d,(n-d)$  のブロック上半三角行列全体

## Complete flag variety

 $\operatorname{GL}(V)$   $\stackrel{\frown}{}$  種々の部分空間  $\leadsto$  部分空間の「配置空間」に  $\operatorname{GL}(V)$  の作用

## Definition (旗/ flag)

旗 = 部分空間の増大列:  $V_0 \subset V_1 \subset \cdots \subset V_k \subset \cdots \subset V_n = V$ ; dim  $V_k = k$ 旗の全体  $\cdots X = \mathscr{F}(\mathbb{C}^n)$ : 完全旗多様体 (complete FV)

#### 射影空間・Grassmann 多様体 · · · 完全旗の一部分を抜きだしたもの

→→ 部分旗多様体 (partial flag variety)

標準基底で生成された旗  $E = (E_k)_{k=0}^n, E_k = \operatorname{span}_{\mathbb{C}} \{e_1, \dots, e_k\}$  :標準旗

- $\mathcal{F}\ell(V) = G \cdot E$ : G の作用は推移的
- $\operatorname{Stab}_G(E) = B = B_n(\mathbb{C})$ : 固定部分群は Borel 部分群 (上半三角行列群)

$$\mathscr{F}\ell(V) \simeq \mathrm{GL}_n(\mathbb{C})/B_n(\mathbb{C})$$

 $B_n(\mathbb{C}) \subset P_\mathbb{C} \quad \leadsto \quad X = \mathscr{F}\ell(V) \twoheadrightarrow G_\mathbb{C}/P_\mathbb{C} : \text{ (partial) flag variety} P_\mathbb{C}:$  放物型部分群 (parabolic subgroup)

## More general flag varieties

以上紹介したのは A 型の旗多様体  $(G_{\mathbb{C}} = \operatorname{GL}_n(\mathbb{C}))$  · · · 一般には?

#### Definition

- $B_{\mathbb{C}} \subset G_{\mathbb{C}}$ : 極大な連結可解部分群 を Borel 部分群という (Borel subgrp)
- $B_{\mathbb{C}} \subset P_{\mathbb{C}}$ : 放物型部分群 (parabolic subgrp = psg)

#### **Definition**

- $\forall$  連結な簡約代数群  $G_{\mathbb{C}}$ ,  $B_{\mathbb{C}}$ : Borel 部分群  $\Longrightarrow$ 
  - $X = G_{\mathbb{C}}/B_{\mathbb{C}}$ : 完全旗多様体 complete flag variety (projective variety)
  - $G_{\mathbb{C}}/P_{\mathbb{C}}$ : 部分旗多様体 partial flag variety  $(B_{\mathbb{C}} \subset P_{\mathbb{C}}$ : parabolic subgrp = psg)

## Example (等方的部分空間の旗多様体)

 $G_{\mathbb{C}} = \operatorname{Sp}_{2n}(\mathbb{C}) \text{ or } \operatorname{SO}_n(\mathbb{C}) \iff G_{\mathbb{C}}/B_{\mathbb{C}} = \{\text{complete flags of isotropic subsp}\}$ 

## 簡約代数群とその部分群、実形

以下, $G_{\mathbb C}$  は常に連結な複素簡約代数群と仮定  $G_{\mathbb R} \subset G_{\mathbb C}$ :  $G_{\mathbb C}$  の実形 (多くの場合,一般線型群  $G_{\mathbb C} = \mathrm{GL}_n({\mathbb C})$  を考える)

## Example ( $G_{\mathbb{C}} = \mathrm{GL}_n(\mathbb{C})$ の非コンパクト実形)

- $G_{\mathbb{R}} = \operatorname{GL}_n(\mathbb{R})$  や  $\operatorname{U}(p,q)$  (n=p+q) (不定値ユニタリ群)
- ullet n=2m が偶数  $\longleftrightarrow$   $G_{\mathbb{R}}=\mathrm{GL}_m(\mathbb{H})$  (四元数体  $\mathbb{H}$  上の一般線型群)
- これらは一般に非コンパクト、非連結な実リー群

### $K_{\mathbb{R}} \subset G_{\mathbb{R}}$ : 極大コンパクト部分群 $\longleftrightarrow$ 複素化 $\longleftrightarrow$ $K_{\mathbb{C}} \subset G_{\mathbb{C}}$

| $G_{\mathbb{C}}$                     | $G_{\mathbb{R}}$                     | $K_{\mathbb{R}}$                          | $ $ $K_{\mathbb{C}}$                                                           | condition |
|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|-----------|
| $\mathrm{GL}_n(\mathbb{C})$          | $\mathrm{GL}_n(\mathbb{R})$          | $O_n(\mathbb{R})$                         | $O_n(\mathbb{C})$                                                              |           |
|                                      | $\mathrm{U}(\pmb{p},\pmb{q})$        | $\mathrm{U}(p) \! 	imes \! \mathrm{U}(q)$ | $\mathrm{GL}_p(\mathbb{C}) \times \mathrm{GL}_q(\mathbb{C})$                   | n = p + q |
|                                      | $\mathrm{GL}_m(\mathbb{H})$          | USp(2m)                                   | $\mathrm{Sp}_{2m}(\mathbb{C})$                                                 | n=2m      |
| $\operatorname{Sp}_{2n}(\mathbb{C})$ | $\operatorname{Sp}_{2n}(\mathbb{R})$ | $\mathrm{U}(\mathit{n})$                  | $\mathrm{GL}_n(\mathbb{C})$                                                    |           |
|                                      | $\operatorname{Sp}(2p,2q)$           | $USp(2p) \times USp(2q)$                  | $\operatorname{Sp}_{2p}(\mathbb{C}) \times \operatorname{Sp}_{2q}(\mathbb{C})$ | n = p + q |
| $\mathrm{SO}_n(\mathbb{C})$          | SO(p,q)                              | $S(O(p) \times O(q))$                     | $S(\mathcal{O}_p(\mathbb{C}) \times \mathcal{O}_q(\mathbb{C}))$                | n = p+q   |
|                                      | $SO^*(2m)$                           | $\mathrm{U}(\mathit{m})$                  | $\mathrm{GL}_m(\mathbb{C})$                                                    | n=2m      |

# 対称対と対称空間/ symmetric spaces

### $G_{\mathbb{R}}$ の Cartan 対合 (Cartan involution) を $\theta$ と表すと、

- ullet 極大コンパクト部分群  $K_{\mathbb{R}}=G^{ heta}_{\mathbb{R}}$  はその固定点部分群であって,
- G<sub>ℝ</sub>/K<sub>ℝ</sub> は(擬)リーマン対称空間[堀田良19].

### Definition (対称対/ symmetric pair)

#### θ: 対称性を表す位数 2 の自己同型

- 複素化  $K_{\mathbb{C}} = G_{\mathbb{C}}^{\theta}$ :  $G_{\mathbb{C}}$  の対称部分群 (symmetric subgroup)
- $\bullet$   $(G_{\mathbb{R}}, K_{\mathbb{R}})$  や  $(G_{\mathbb{C}}, K_{\mathbb{C}})$  を対称対 (symmetric pair) と呼ぶ.

## Example (エルミート対称空間 (Hermitian symmetric pairs))

- $\bullet$   $G_{\mathbb{R}}/K_{\mathbb{R}} = \mathrm{U}(p,q)/\mathrm{U}(p) \times \mathrm{U}(q)$
- $G_{\mathbb{R}}/K_{\mathbb{R}} = \operatorname{Sp}_{2n}(\mathbb{R})/\operatorname{U}(n), \quad SO^*(2m)/\operatorname{U}(m)$
- $G_{\mathbb{R}}/K_{\mathbb{R}} = SO(n,2)/S(O(n)\times O(2))$

# 旗多様体上の種々の軌道と有限性

## 旗多様体 $X = G_{\mathbb{C}}/B_{\mathbb{C}}$ 上への $G_{\mathbb{C}}$ の部分群の作用

- Borel 部分群 B<sub>C</sub>
- ② 対称部分群 K<sub>C</sub>
- **③** 極大トーラス  $T_{\mathbb{C}} = (\mathbb{C}^{\times})^n$ : ( $G_{\mathbb{C}}$  の Cartan 部分群)
- ∮ 実形 G<sub>ℝ</sub> (非コンパクト実リー群)

## Borel 部分群の作用と Bruhat 分解

 $X = G_{\mathbb{C}}/B_{\mathbb{C}}$  上の  $B_{\mathbb{C}}$  軌道  $\leftrightarrow$  両側剰余類分解

## Theorem (Bruhat 分解)

$$X/B_{\mathbb{C}} \simeq B_{\mathbb{C}} \backslash G_{\mathbb{C}}/B_{\mathbb{C}} \simeq W_G$$

 $W_G$ : Weyl 群(有限 Coxeter 群) ([例]  $G_{\mathbb{C}} = \mathrm{GL}_n(\mathbb{C}) \iff W_G = S_n$ : 対称群)

- W<sub>G</sub>: G<sub>C</sub> のリー環 g のルート系より決まる鏡映群 (有限群)
- $W_G \simeq N_{G_{\mathbb{C}}}(T_{\mathbb{C}})/T_{\mathbb{C}}$ ,  $T_{\mathbb{C}} \subset B_{\mathbb{C}}$ : 極大トーラス,  $N_{G_{\mathbb{C}}}(T_{\mathbb{C}})$ : 正規化部分群

#### 剰余類分解

$$G_{\mathbb{C}} = \bigsqcup\nolimits_{w \in W_G} B_{\mathbb{C}} w B_{\mathbb{C}}, \qquad C_w := B_{\mathbb{C}} w B_{\mathbb{C}} / B_{\mathbb{C}}$$

 $C_w = B_{\mathbb{C}} w B_{\mathbb{C}} / B_{\mathbb{C}}$  を Bruhat 胞体 (Schubert 胞体)

~→ Schubert 解析,コホモロジー理論,Hecke 環,組合せ論

# 対称部分群 ₭ による軌道の有限性

旗多様体 X 上の  $K_{\mathbb{C}}$  軌道  $X/K_{\mathbb{C}}$  の分類  $\cdots$  Richardson-Springer 他

- ④  $X/K_{\mathbb{C}}\simeq \bigsqcup_{T_i}W_{G_{\mathbb{C}}}(T_i)/W_{K_{\mathbb{C}}}(T_i)$   $\{T_i\}_{i=1}^{\ell}\colon \theta$  安定な極大トーラスの  $K_{\mathbb{C}}$  共役類

$$T_{\mathbb{C}}$$
:  $G_{\mathbb{C}}$  の  $\theta$  安定極大トーラス  $\tau(G_{\mathbb{C}}) := \{x\theta(x^{-1}) \mid x \in G_{\mathbb{C}}\} \simeq G_{\mathbb{C}}/K_{\mathbb{C}}$   $N_{G_{\mathbb{C}}}(T_{\mathbb{C}})$  への  $T_{\mathbb{C}}$  の作用は  $\theta$ -twisted な作用  $g \cdot x = gx\theta(g^{-1})$ 

- Weyl 群の  $\theta$ -twisted involution  $w + \pi$  のファイバーの情報  $\pi: \mathcal{K}_{\mathbb{C}} x \mathcal{B}_{\mathbb{C}} \mapsto \mathcal{B}_{\mathbb{C}} \theta(x)^{-1} x \mathcal{B}_{\mathbb{C}} = \mathcal{B}_{\mathbb{C}} w \mathcal{B}_{\mathbb{C}}$
- 組合せ論的な K<sub>C</sub> 軌道の分類 · · · 大島・松木の clan による分類

冪零軌道の有限性+ Springer ファイバーの有限性 ⇒ 軌道の有限性

## GR 軌道と松木対応

 $G_{\mathbb{R}} \subset G_{\mathbb{C}}$ : 実形 (real form)

## Theorem (青本 (1966), Wolf (1969))

 $X = G_{\mathbb{C}}/B_{\mathbb{C}}$  上の  $G_{\mathbb{R}}$  軌道は有限である

対称部分群  $K_{\mathbb{C}}$  は  $G_{\mathbb{R}}$  の極大コンパクト群の複素化  $\longleftrightarrow$   $K_{\mathbb{C}}$  軌道と  $G_{\mathbb{R}}$  軌道の間には関係がある(だろう)

## Theorem (松木対応 (1979))

旗多様体  $X=G_{\mathbb{C}}/B_{\mathbb{C}}$  上の  $K_{\mathbb{C}}$  軌道と  $G_{\mathbb{R}}$  軌道の間に閉包関係を逆にする全単射対応が存在する.

松木対応: 
$$K_{\mathbb{C}}\backslash G_{\mathbb{C}}/B_{\mathbb{C}} \stackrel{\sim}{\longleftrightarrow} G_{\mathbb{R}}\backslash G_{\mathbb{C}}/B_{\mathbb{C}}$$

- $K_{\mathbb{C}}$  軌道  $\mathbb{O} \longleftrightarrow G_{\mathbb{R}}$  軌道  $\mathcal{O} \iff O = \mathbb{O} \cap \mathcal{O}$  がコンパクト
- $\bullet$  さらに,共通部分 O は唯一つの  $K_{\mathbb{R}}$  軌道

## Borel-Weil の定理と離散系列表現

### 有限次元正則表現

Borel & Weil:  $X = G_{\mathbb{C}}/B_{\mathbb{C}}$  上の直線束  $L \to X$  の切断を考えると G の  $\forall$  有限次 元既約表現が得られる

Harish-Chandra, Kostant, Langlands:

非コンパクト群の無限次元ユニタリ表現へと BW の定理を一般化

 $G_{\mathbb{R}}$ : 非コンパクトな連結実簡約リー群, 極大コンパクト部分群  $K_{\mathbb{R}} \subset G_{\mathbb{R}}$ 

Definition (離散系列表現/discrete series)

 $L^2(G_{\mathbb{R}})$ : 左正則表現の離散スペクトルを離散系列表現 (discrete series) という.

### Theorem (Harish-Chandra)

- G<sub>ℝ</sub> の離散系列表現が存在する  $\iff K_{\mathbb{R}}$  の極大トーラス  $T_{\mathbb{R}}$  が  $G_{\mathbb{R}}$  の極大トーラス (rank  $G_{\mathbb{R}} = \operatorname{rank} K_{\mathbb{R}}$ )
- ❷ 離散系列表現の分類,正則離散系列の構成

# Langlands conjecture (solved)

Kostant & Langlands: L<sup>2</sup> コホモロジーによる一般化を予想

## Theorem (Schmid [Sch71; Sch76])

 $\operatorname{rank} G_{\mathbb{R}} = \operatorname{rank} K_{\mathbb{R}}$  とする.

- G<sub>R</sub>/T<sub>R</sub> は複素多様体の構造を持ち,
- ② 複素直線束  $L_{\lambda} \rightarrow G_{\mathbb{R}}/T_{\mathbb{R}}$  の  $\exists q$  次  $L^2$  コホモロジー上に離散系列表現を得る
- - $\bullet$   $X = G_{\mathbb{C}}/B_{\mathbb{C}}$  上の  $G_{\mathbb{R}}$  軌道は有限個
  - ullet  $G_{\mathbb{R}}/T_{\mathbb{R}}$  は開軌道と同型  $\Longrightarrow$  複素多様体の構造を持つ  $(\cdot \colon X$  は複素多様体)
  - その上に離散系列表現が構成される
  - 松木対応: G<sub>ℝ</sub> 開軌道 ↔ K<sub>ℂ</sub> 閉軌道
  - K<sub>□</sub> 閉軌道は境界がないので滑らか、K<sub>□</sub> の旗多様体に同型
  - ullet  $K_{\mathbb{C}}$  閉軌道に対応する (twisted)  $\mathscr{D}_X$  加群の大域切断上に離散系列表現が実 現される ([Hec+25, Th12.5])

# Harish-Chandra 加群の KGB 分類 $\leftrightarrow K_{\mathbb{C}} \backslash G_{\mathbb{C}}/B_{\mathbb{C}}$

 $G_{\mathbb{R}}$  の既約ユニタリ表現 $\overset{微分表現}{\sim}(\mathfrak{g},K_{\mathbb{C}})$ 加群:  $ext{Harish-Chandra}$  加群 (HC 加群)

HC 加群: ユニタリ表現を含む<mark>認容表現</mark> (admissible —) の無限小同型類を代表, 代数的に扱いやすい 、〜→ 実リー群の無限次元表現論で広く使われている

#### **Theorem**

自明な無限小指標を持つ既約 HC 加群

 $\stackrel{BB o h\bar{h}}{\longrightarrow} K_{\mathbb{C}}$  同変な既約  $\mathscr{D}_X$  加群

RH 対応 旗多様体上の K<sub>C</sub> 軌道と局所系

- $ullet X = G_{\mathbb C}/B_{\mathbb C}$  上の  $B_{\mathbb C}$  同変な  $\mathscr D_X$  加群  $\xrightarrow{\mathrm{BB}\ \mathrm{yic}}$  無限小指標が自明な<mark>最高ウェイト表現</mark>の圏( $(\mathfrak g,B_{\mathbb C})$  加群の圏)
- B<sub>C</sub> 軌道 (局所系は常に自明)

RH 対応 既約な最高ウェイト表現

B<sub>C</sub> 軌道: B<sub>C</sub>\G<sub>C</sub>/B<sub>C</sub> ≃ W<sub>G</sub>: Weyl 群

# 軌道の有限性と余法束多様体(一般論)

X: 滑らかな  $G_{\mathbb{C}}$  多様体,  $T^*X$ : 余接束 (cotangent bundle)  $\exists \mu_X: T^*X \to \mathfrak{g}^*$ : モーメント写像  $(G_{\mathbb{C}}$  同変)

#### **Definition**

零ファイバー  $\mathcal{Z}_X := \mu_X^{-1}(0)$  を余法束多様体 (conormal variety) と呼ぶ

次の定理がキーポイント である.  $T^*_{\mathbb{Q}}X$ : 軌道  $\mathbb{Q}$  の余法束

#### **Theorem**

 $G_{\mathbb C}$  が X 上に有限軌道を持つ  $\Longrightarrow$   $\mathcal Z_X = \bigsqcup_{\mathbb O} T_{\mathbb O}^*X$  は等次元多様体ここで  $\mathbb O \in X/G_{\mathbb C}$  は  $G_{\mathbb C}$  軌道を動く

#### Corollary

 $G_{\mathbb{C}}$  が X 上に有限軌道を持てば  $X/G_{\mathbb{C}} \ni \mathbb{O} \longleftrightarrow \overline{T_{\mathbb{O}}^*X} \in \operatorname{Irr} \mathcal{Z}_X$  は全単射

 $\implies$   $\operatorname{Irr} \mathcal{Z}_X$  は軌道を分類する

# 旗多様体上のモーメント写像

 $X = G_{\mathbb{C}}/B_{\mathbb{C}} = \{\mathfrak{b} \mid \mathfrak{b} \text{ は Borel subalg}\}$ : 旗多様体

- 余接束:  $T^*X = \{(\mathfrak{b},x) \mid \mathfrak{b} \in X, x \in \mathfrak{u}\}$   $\mathfrak{u}$ : 冪零根基 (nil-radical)
- モーメント写像:  $\xi_X: T^*X \to \mathfrak{g}^* = \mathfrak{g}, \qquad \xi_X(\mathfrak{b},x) = x$  第 2 成分への射影
- $\operatorname{Im} \xi_X = \mathcal{N}_{\mathfrak{g}} = \{ x \in \mathfrak{g} \mid x \ \mathbf{t}$ 冪零元  $\} \subset \mathfrak{g} :$ 冪零多様体  $\xi_X : T^*X \to \mathcal{N}_{\mathfrak{g}}$

### $G_{\mathbb{C}}=\mathrm{GL}_n(\mathbb{C})$ のとき

- 幕零軌道 ∅ ←→ n の分割 λ ⊢ n: ヤング図形 (ジョルダン標準形)
- $x \in \mathcal{O}_{\lambda} \subset \mathcal{N}_{\mathfrak{q}}$ : 冪零元
- STab(λ): λ ⊢ n を台に持つ標準盤全体

## Theorem (Steinberg [Ste76])

 $\operatorname{Irr} \xi_X^{-1}(x) \simeq \operatorname{STab}(\lambda)$ :  $\xi_X$  のファイバーの既約成分と標準盤が対応する

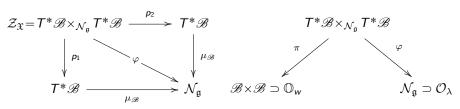
# Springer-Steinberg 理論 ( $G_{\mathbb{C}} = \mathrm{GL}_n(\mathbb{C})$ : type A)

$$\mathscr{B} := G_{\mathbb{C}}/B_{\mathbb{C}}$$
 (X から変更),  $\mathfrak{X} = \mathscr{B} \times \mathscr{B}$ : 二重旗多様体 ( $G_{\mathbb{C}}$  の対角的作用)  $\longrightarrow \mathfrak{X}/G_{\mathbb{C}} \simeq B_{\mathbb{C}} \backslash G_{\mathbb{C}}/B_{\mathbb{C}} = W_G$ 

• 余法束多様体:

$$\mathcal{Z}_{\mathfrak{X}} = T^* \mathscr{B} \times_{\mathcal{N}_{\mathfrak{g}}} T^* \mathscr{B} = \{ (\mathfrak{b}_1, \mathfrak{b}_2, x) \in G_{\mathbb{C}} / B_{\mathbb{C}} \times G_{\mathbb{C}} / B_{\mathbb{C}} \times \mathfrak{g} \mid x \in \mathfrak{u}_1 \cap \mathfrak{u}_2 \}$$

•  $\varphi: \mathcal{Z}_{\mathfrak{X}} \to \mathcal{N}_{\mathfrak{g}}$  は  $\varphi(\mathfrak{b}_1, \mathfrak{b}_2, x) = x$  (第 3 成分への射影)となる.



$$\Phi: W_G = S_n \simeq (\mathscr{B} \times \mathscr{B})/G \longrightarrow \mathcal{N}_{\mathfrak{g}}/G_{\mathbb{C}} \simeq \mathcal{P}(n)$$
: Steinberg 写像

$$\Phi(\mathbb{O}_w) = \mathcal{O}_\lambda \iff \varphi(\overline{\pi^{-1}}(\mathbb{O}_w)) = \overline{\mathcal{O}_\lambda} 
(w \in S_n: 置換, \lambda \in \mathcal{P}(n): 分割 (Jordan 標準形))$$

Kyo Nishiyama (AGU)

## Robinson-Schensted 対応

$$\mathcal{Z}_{\mathfrak{X}}(w) = \overline{\pi^{-1}(\mathbb{O}_w)} = \overline{T_{\mathbb{O}_w}\mathfrak{X}}$$
: 余法束多様体  $\mathcal{Z}_{\mathfrak{X}}$  の既約成分  $\mathcal{Z}_{\mathfrak{X}} = \bigcup_{w \in S_n} \mathcal{Z}_{\mathfrak{X}}(w)$ : 既約分解

## Theorem (Steinberg (cf. [Ste88]))

 $\forall w \in S_n$  に対して,余法束多様体の既約成分の Steinberg 写像による像は冪零軌道の閉包に一致する:  $\varphi(\mathcal{Z}_{\mathfrak{X}}(w)) = \overline{\mathcal{O}_{\lambda}} \subset \mathcal{N}$  ( $\exists ! \lambda \in \mathcal{P}(n)$ )

 $\Phi: S_n \ni w \mapsto \lambda \in \mathcal{P}(n)$  は Robinson-Schensted 対応 (RS 対応) で与えられる

$$S_{n} \xrightarrow{\sim} \coprod_{\lambda \in \mathcal{P}(n)} \{ (T_{1}, T_{2}) \mid T_{i} \in STab(\lambda) \} \quad \ni (T_{1}, T_{2})$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\mathcal{P}(n) \qquad \qquad \ni \lambda = shape(T_{i})$$

 $\operatorname{STab}(\lambda)$ : 台が  $\lambda$  の標準盤全体

## 多重旗多様体

### 以下,Uばらく $G_{\mathbb{C}}, K_{\mathbb{C}}, B_{\mathbb{C}}$ などを G, K, B などと書く

### Theorem (Magyar-Weyman-Zelevinsky, Matsuki)

- $oldsymbol{0}$  G: 古典群,有限軌道を持つ  $oldsymbol{3}$  重旗多様体  $G/P_1 \times G/P_2 \times G/P_3$  の分類
- ❷ 4 重旗多様体が有限軌道を持つことはない

## Theorem (Finkelberg-Ginzburg-Travkin)

 $G=\mathrm{GL}_n(\mathbb{C})$  のとき,3 重旗多様体  $\mathfrak{X}=G/P_{(1,n-1)}\times G/B\times G/B$  に対する Springer-Steinberg 理論と mirabolic Robinson-Schensted 対応の発見

#### Naïve idea

3 重旗多様体  $\rightsquigarrow$  ( $\mathbb{G}, \mathbb{K}$ ) = ( $G \times G$ , diag G): 対称対へ...

# 対称対の二重旗多様体

- (G, K): 対称対 (symmetric pair)
- Q ⊂ K, P ⊂ G: 放物型部分群 (parabolic subgrp)

## Definition (N-Ochiai [NO11])

 $X = K/Q \times G/P$  (対角的 K 作用): (対称対の) 二重旗多様体 (double flag variety) K 軌道が有限のとき,有限型という。

### Example (type AIII)

$$(G,K) = (GL_n(\mathbb{C}), GL_p(\mathbb{C}) \times GL_q(\mathbb{C})) (n = p + q)$$
: AIII 型対称対

$$P = P_{(r,s)} \subset G \; (n = r + s)$$
,  $\forall Q \subset K \implies \underline{\mathbb{X}} = K/Q \times G/P \;$ は有限型

$$P = P_{(r,s)} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a \in \operatorname{GL}_r(\mathbb{C}), d \in \operatorname{GL}_s(\mathbb{C}) \right\}$$

とくに 
$$Q = B_K$$
: Borel 部分群  $\Longrightarrow \mathbb{X} \simeq \mathscr{F}\ell(\mathbb{C}^p) \times \mathscr{F}\ell(\mathbb{C}^q) \times \mathrm{Gr}_r(\mathbb{C}^n)$ 

2 つの完全旗多様体と,グラスマン多様体の直積  $(K = \operatorname{GL}_p \times \operatorname{GL}_q$  作用)

# 有限型の二重旗多様体

#### **Theorem**

- ① G: 単純,  $P = B_G$  or  $Q = B_K$ : Borel 部分群のとき有限型二重旗多様体  $\mathbb{X} = G/P \times K/Q$  の分類 (He-N-Ochiai-Y.Oshima [He+13])
- ❷ (G,K): AIII 型対称対のとき有限型二重旗多様体 ※ = G/P × K/Q の分類 (Homma [Hom21], Fresse-N [FN23b])

#### Corollary

 $\overline{\mathbf{w}}$  K 作用を持つ旗多様体 X=G/P (spherical K-variety G/P) の分類

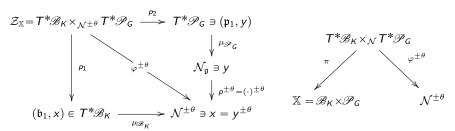
#### Proof.

X が球 K 多様体  $\stackrel{\text{def}}{\Longleftrightarrow}$  開  $B_K$  軌道を持つ  $\iff$  有限個の  $B_K$  軌道を持つ +  $\left(K/B_K \times G/P\right)/K \simeq B_K \setminus (G/P)$ 



# 一般化された Springer-Steinberg 理論

- ullet  $\mathscr{B}_K = K/B_K$ : K の完全旗多様体  $\mathscr{P}_G = G/P_G$ : G の部分旗多様体
- $\mathbb{X} = \mathcal{B}_K \times \mathcal{P}_G$ : 有限型二重旗多様体,  $\mathcal{Z}_{\mathbb{X}} \subset T^*\mathbb{X}$ : 余法束多様体
- $\theta \in Aut \mathfrak{q}$ : Cartan inv.  $\leftrightarrow \mathfrak{q} = \mathfrak{k} \oplus \mathfrak{s}$ : カルタン分解
- $\mathcal{N}^{\pm \theta} = \{ x \in \mathcal{N}_{\mathfrak{g}} \mid \theta(x) = \pm x \}$ : 冪零多様体,  $\mathcal{N}^{\theta} = \mathcal{N}_{\mathfrak{k}} \subset \mathfrak{k}$ ,  $\mathcal{N}^{-\theta} = \mathcal{N}_{\mathfrak{s}} \subset \mathfrak{s}$



## Definition (2 通りの Steinberg 写像 $\Phi^{\pm\theta}$ )

# AIII 型二重旗多様体の色付き RS 対応 (colored —)

•  $(G,K)=(\operatorname{GL}_n(\mathbb{C}),\operatorname{GL}_p(\mathbb{C})\times\operatorname{GL}_q(\mathbb{C}))$ : Alll 型,  $P_G=P_{(r,n-r)}$ : 極大放物型部分群

### Theorem (X の K 軌道の分類: Fresse-N [FN23a])

有限型二重旗多様体  $\mathbb{X}=\mathcal{B}_K\times\mathcal{P}_G$  の K 軌道は<mark>部分置換行列</mark>の 2 つの非退化な組  $\omega=( au_1, au_2)$   $( au_1\in \mathrm{M}_{p,r}, au_2\in \mathrm{M}_{q,r})$  の  $S_r$  共役類によって分類できる.

#### Fact (冪零 K 軌道の分類 cf. [CM93])

- ②  $\mathcal{N}^{-\theta}/K \simeq \mathcal{P}^{\pm}(n) \ni \Lambda$ : 符号付きヤング図形 (signature (p,q))

#### Theorem (Fresse-N [FN23a, Th.2.9])

K 軌道  $\omega \in \mathfrak{T}_{(p,q;r)}/S_r$  に標準盤の組  $(T_1,T_2)$  を対応させる全単射:

$$\mathbb{X}/K \simeq \mathfrak{T}_{(p,q;r)}/S_r \xrightarrow{\simeq} \bigsqcup_{(\lambda,\mu) \in \mathcal{P}(p) \times \mathcal{P}(q)} \mathcal{T}_{\lambda,\mu}$$
: Colored-RS 対応

 $T_{\lambda,\mu}$  は次の  $\bigcirc$  ,  $\bigcirc$  を満たす  $\bigcirc$  つ組  $(T_1,T_2;\lambda',\mu';\nu)$  の全体である.

- $(T_1, T_2) \in \operatorname{STab}(\lambda) \times \operatorname{STab}(\mu)$  は台がそれぞれ  $\lambda, \mu$  の標準盤の組,
- ②  $\nu \subset \lambda' \subset \lambda$ ,  $\nu \subset \mu' \subset \mu$  であって  $|\lambda'| + |\mu'| = |\nu| + r$  を満たす.

## 実二重旗多様体

### 実数体上の二重旗多様体の本格的な理論は始まったばかりである.

arXiv:2506.12663 [math.RT]/ Kyo Nishiyama, Taito Tauchi, Orbit structures on real double flag varieties for symmetric pairs

Example (AIII 型対称対 
$$(G_{\mathbb{C}}, K_{\mathbb{C}}) = (\operatorname{GL}_{2n}(\mathbb{C}), \operatorname{GL}_n(\mathbb{C}) \times \operatorname{GL}_n(\mathbb{C}))$$
)

複素共役写像: 
$$\gamma(g) = J_n^{-1}(g^*)^{-1}J_n$$
,  $J_n = \sqrt{-1}\begin{pmatrix} 0 & \mathbf{1}_n \\ -\mathbf{1}_n & 0 \end{pmatrix}$ 

#### $\gamma$ に関する実形 $\longrightarrow$

- 実対称対  $(G_{\mathbb{R}}, H_{\mathbb{R}}) \simeq (\mathrm{U}(n, n), \mathrm{GL}_n(\mathbb{C}))$
- ullet  $P_{\mathbb{R}}=\mathrm{U}(n,n)\cap P_{(n,n)}$  ,  $Q_{\mathbb{R}}\simeq B_n(\mathbb{C})$

実二重旗多様体:  $\mathfrak{X}_{\mathbb{R}} = G_{\mathbb{R}}/P_{\mathbb{R}} \times H_{\mathbb{R}}/Q_{\mathbb{R}} \simeq \mathsf{HLGr}_n(\mathbb{C}^{2n}) \times \mathscr{F}\ell(\mathbb{C}^n)$ 

- $\mathsf{HLGr}_n(\mathbb{C}^{2n}) = \{W \in \mathrm{Gr}_n(\mathbb{C}^{2n}) \mid W \ \mathsf{tt} \ \mathbb{C}^{(n|n)} \ \mathsf{o}$ 極大等方的部分空間 $\}: \mathbf{L}$  ルミート・ラグランジュ多様体
- ℱℓ(ℂ<sup>n</sup>): 完全旗多様体
- ● C<sup>(n|n)</sup> は符号が (n, n) の不定値エルミート内積空間

# 実二重旗多様体上の Η 軌道の有限性と分類

#### Lemma

複素二重旗多様体  $\mathfrak{X}_{\mathbb{C}}$  が有限型  $\Longrightarrow$  対応する実形  $\mathfrak{X}_{\mathbb{R}}$  はやはり有限型

### AIII 型の実二重旗多様体で得られている結果 (N-Tauchi [NT25])

- → H<sub>R</sub> 軌道の分類 (3種類の異なる分類):
  - 符号付き部分置換とそれに付隨した組合せ論的なグラフ
  - がロアコホモロジー
- 開軌道に付隨した退化主系列の間の intertwining 作用素 (積分核作用素)

退化主系列表現  $\to$  主系列表現:  $\pi_{\alpha} = \operatorname{Ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}} \chi_{\alpha} \xrightarrow{H_{\mathbb{R}} \text{ log}} \eta_{\beta} = \operatorname{Ind}_{Q_{\mathbb{R}}}^{H_{\mathbb{R}}} \xi_{\beta}$ 

 $(\chi_{\alpha}$  は  $P_{\mathbb{R}}$  の, $\xi_{\beta}$  は  $Q_{\mathbb{R}}$  の一次元指標)

Thank you for your attention!!

## ご静聴ありがとうございました

End of Talk

### References I

| [CNT12] | Dan Ciubotaru, Kyo Nishiyama, and Peter E. Trapa. "Regular orbits     |
|---------|-----------------------------------------------------------------------|
|         | of symmetric subgroups on partial flag varieties". In: Representation |
|         | theory, complex analysis, and integral geometry. Birkhäuser, 2012,    |
|         | pp. 61–86.                                                            |

- [CM93] David H. Collingwood and William M. McGovern. *Nilpotent orbits in semisimple Lie algebras*. Van Nostrand Reinhold Mathematics Series. New York: Van Nostrand Reinhold Co., 1993, pp. xiv+186.
- [FN23a] Lucas Fresse and Kyo Nishiyama. "On generalized Steinberg theory for type AIII". In: *Algebr. Comb.* 6.1 (2023), pp. 165–195.
- [FN23b] Lucas Fresse and Kyo Nishiyama. Overview on the theory of double flag varieties for symmetric pairs. 2023.
- [He+13] Xuhua He et al. "On orbits in double flag varieties for symmetric pairs". In: *Transform. Groups* 18.4 (2013), pp. 1091–1136.

### References II

| [Hec+25] | Henryk Hecht et al. "Localization and standard modules for real        |  |  |
|----------|------------------------------------------------------------------------|--|--|
|          | semisimple Lie groups II: irreducibility and classification". In: Pure |  |  |
|          | Appl. Math. Q. 21.2 (2025), pp. 697–811.                               |  |  |

- [Hom21] Hiroki Homma. "Double Flag Varieties and Representations of Quivers". In: arXiv: 2103.14509 (2021).
- [NO11] Kyo Nishiyama and Hiroyuki Ochiai. "Double flag varieties for a symmetric pair and finiteness of orbits". In: *J. Lie Theory* 21.1 (2011), pp. 79–99.
- [NT25] Kyo Nishiyama and Taito Tauchi. *Orbit structures on real double flag varieties for symmetric pairs*. 2025.
- [Sch71] Wilfried Schmid. "On a conjecture of Langlands". In: Ann. of Math. (2) 93 (1971), pp. 1–42.
- [Sch76] Wilfried Schmid. "L²-cohomology and the discrete series". In: Ann. of Math. (2) 103.2 (1976), pp. 375–394.

### References III

[Ste76] Robert Steinberg. "On the desingularization of the unipotent variety". In: *Invent. Math.* 36 (1976), pp. 209–224.

[Ste88] Robert Steinberg. "An occurrence of the Robinson-Schensted

correspondence". In: *J. Algebra* 113.2 (1988), pp. 523–528.

[堀田良 19] 堀田良之. 対称空間今昔譚. 数学書房, 2019.