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Zeta distributions/integrals

Tate's zeta integral

Z7(p.s) = j p@)2Pdz  (s€C, pe S(R))
R

@ Convergence: Res > —1
@ Meromorphic continuation to C

@ Functional equation:

7530 ((s + 1)/2)
M(=s/2)

-+ just copied it from Leticia's paper (JFA 2004) [Bar04]

ZT(p,s) = ZT(p,~s—1)

K. Nishiyama (AGU) Enhanced Zeta Distribution 2018/06/18 3/23



Zeta distributions/integrals

Tate's zeta integral

Z7(p.s) = j p@)2Pdz  (s€C, pe S(R))
R

Convergence: Res > —1

Meromorphic continuation to C

Functional equation:
753 (s +1)/2)
M(=s/2)
-+ just copied it from Leticia's paper (JFA 2004) [Bar04]
Related to Riemann zeta ((s)

ZT(907S) = ZT(@? —S - 1)
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Zeta distributions/integrals

Godement-Jacquet zeta integral
A generalization to (GL,(R) x GL,(R), M,(R)):
Z9p5) = | (o)l detzltaz
)

n

Again we have
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Zeta distributions/integrals

Godement-Jacquet zeta integral
A generalization to (GL,(R) x GL,(R), M,(R)):

Z9p5) = | (o)l detzltaz

n(R)

Again we have - - - copied it from Leticia's paper (JFA 2004) [Bar04]
o Convergence: Res > —1 with meromorphic continuation to C
@ Functional equation:

Ln(s+n) —2s

72 T

— 7%, s) = ———Z%(p,—s—n

PRGN PR G

@ Related to zeta function ((L,s) for a lattice L --- important in NT
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Zeta distributions/integrals

Godement-Jacquet zeta integral

A generalization to (GL,(R) x GL,(R), M,(R)):

Z%(p,s) = f p(z)|det z|°dz

n(R)

Again we have - -- copied it from Leticia's paper (JFA 2004) [Bar04]
o Convergence: Res > —1 with meromorphic continuation to C
@ Functional equation:

7_(_%n(s—i-n) 328

——7%(p,s) = ————Z%(g,—s—n
@ Related to zeta function ((L,s) for a lattice L --- important in NT

3 further generalizat'n to (GL,(R), Sym,(R)) (Shintani, Satake-Faraut, ...)
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Zeta distributions/integrals

Godement-Jacquet zeta integral

A generalization to (GL,(R) x GL,(R), M,(R)):

Z9p5) = | (o)l detzltaz

n(R)

Again we have - -- copied it from Leticia's paper (JFA 2004) [Bar04]
o Convergence: Res > —1 with meromorphic continuation to C
@ Functional equation:

Ln(s+n) -
%ZGJ(%S) __T:
Fn(%5") n(—s/2)
@ Related to zeta function ((L,s) for a lattice L --- important in NT

3 further generalizat'n to (GL,(R), Sym,(R)) (Shintani, Satake-Faraut, ...)

Question : What is a right frame work?

S

NS

ZGJ (9/5’ -5 n)
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Zeta distributions/integrals

Prehomogeneous Vector Space

Frame work brought by Shintani and Mikio Sato (~ 70's, [SS74]):
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Zeta distributions/integrals

Prehomogeneous Vector Space

Frame work brought by Shintani and Mikio Sato (~ 70's, [SS74]):
Setting (roughly):
(G,V): PV /C, ie., 3 an open orbit
P(z) € C[V] : fundamental relative invariant with character xp
Ve\{P =0} = Ule O; : decomposition to open orbits

Definition 2.1 (local zeta integral)

75V (p,5) = f o(2)|P(2)°dz

i
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Fundamental Theorem of PV

Theorem 2.2 (Sato-Shintani [SS74])

Assume G is reductive and 3 P(z) only one fundamental rel inv
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Fundamental Theorem of PV

Theorem 2.2 (Sato-Shintani [SS74])
Assume G is reductive and 3 P(z) only one fundamental rel inv

Zi(p,s) converges in Res > 0 and continued meromorphically to C
«~ b-function and Bernstein-Sato identity

local functional equation: n = dim V,d = deg P

J4
Zi(@,s—gq)=7(6—-7) _gl uij(s)Zj(p, —s)
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Fundamental Theorem of PV

Theorem 2.2 (Sato-Shintani [SS74])
Assume G is reductive and 3 P(z) only one fundamental rel inv

Zi(p,s) converges in Res > 0 and continued meromorphically to C
«~ b-function and Bernstein-Sato identity

local functional equation: n = dim V,d = deg P

Zi(¢,s—g) =1(s— )Zuu() (0, —s)

Remark 2.3

Gamma factor v(s) can be described explicitly in terms of b-function
ujj(s) is a product of exponential function and a polynomial in etmis
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Fundamental Theorem of PV

Theorem 2.2 (Sato-Shintani [SS74])
Assume G is reductive and 3 P(z) only one fundamental rel inv

Zi(p,s) converges in Res > 0 and continued meromorphically to C
«~ b-function and Bernstein-Sato identity

local functional equation: n = dim V,d = deg P

Zi(@,s —g) =(s - )Z i(s)Zj(#, —s)

Remark 2.3

Gamma factor v(s) can be described explicitly in terms of b-function
ujj(s) is a product of exponential function and a polynomial in gtmis

The Fundamental Theorem is generalized to the case of several complex
variables by Fumihiro Sato [Sat82a] [Sat83] [Sat82b]
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Enhanced zeta integral and its meromorphic continuation

Enhanced space

Aim
@ To investigate the zeta integral for PV
with two fundamental relative invariants

o Generalization of existing results on M,(R), Sym,(R),... etc
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Enhanced zeta integral and its meromorphic continuation

Enhanced space

Aim
@ To investigate the zeta integral for PV
with two fundamental relative invariants

o Generalization of existing results on M,(R), Sym,(R),... etc

Setting:
e V = Sym,(R) : Euclidean Jordan algebra (cf. Faraut-Kordnyi [FK94])
action by L = Str (V) = GL,(R)
o E=M,4(R) =@R": representation of V
d-copies of natural rep, action by Str (V) = GL,(R) & H = GL4(R)
o W=V®E =Sym,(R) @M, 4(R) : enhanced space
action of G = L x H = GL,(R) x GL4(R) via

(g,h)(z,y) = (gz'g.gy"h) where (g,h)elxH=G
(z,y) e VBRE=W

K. Nishiyama (AGU) Enhanced Zeta Distribution 2018/06/18 7/23



Enhanced zeta integral and its meromorphic continuation

Two relative invariants Py, P

Extend the base field R to C
Ge " We = Sym,(C)xM, 4(C): PV
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Enhanced zeta integral and its meromorphic continuation

Two relative invariants Py, P

Extend the base field R to C
Ge " We = Sym,(C)xM, 4(C): PV

Lemma 3.1

Assume d < n. Then there are two fundamental relative invts of (Gc, W¢):
for (z,y) € Wg=Sym, xM, 4, (g, h) € Gc

Pi(z,y) = detz with char xp, (g, h) = (detg)?

Py(z,y) = (—l)ddet< tzy g) with char xp,(g, h) = (det g)?(det h)?

V relative invariants are of the form P™ Py (my, my € Zq)
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Enhanced zeta integral and its meromorphic continuation

Two relative invariants Py, P

Extend the base field R to C
Ge " We = Sym,(C)xM, 4(C): PV
Lemma 3.1
Assume d < n. Then there are two fundamental relative invts of (Gc, W¢):
for (Zvy) € W(C:Symn ><|vln,dr (g7 h) € G(C
Pi(z,y) = detz with char xp, (g, h) = (detg)?

Py(z,y) = (—l)ddet< tzy g) with char xp,(g, h) = (det g)?(det h)?

V relative invariants are of the form P™ Py (my, my € Zq)

Note: z € Sym,(C) is regular = P»(z,y) = detz - det('yz"1y)
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Enhanced zeta integral and its meromorphic continuation

Two relative invariants Py, P

Extend the base field R to C
Ge " We = Sym,(C)xM, 4(C): PV
Lemma 3.1

Assume d < n. Then there are two fundamental relative invts of (Gc, W¢):
for (z,y) € Wg=Sym, xM, 4, (g, h) € Gc

Pi(z,y) = detz with char xp, (g, h) = (detg)?

Py(z,y) = (—l)ddet< tzy g) with char xp,(g, h) = (det g)?(det h)?

V relative invariants are of the form P™ Py (my, my € Zq)

Note: z € Sym,(C) is regular = P»(z,y) = detz - det('yz"1y)

Ifd>n = P,=0 & onlyone rel inv Py survives

We always assume d < n below
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Enhanced zeta integral and its meromorphic continuation

b-functions

inner product in We: {(z,y), (w,x)) = Trzw + Tr fyx
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Enhanced zeta integral and its meromorphic continuation

b-functions

inner product in We: {(z,y), (w,x)) = Trzw + Tr fyx
P#(0z,y) : const coeff diff op defined by

P,-”‘(82,},)e<(z’)’)’(“”x)> = P,-(W,x)e<(z7y)’(w’x)> (z,we Sym,,y,x €M, q)
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b-functions

inner product in We: {(z,y), (w,x)) = Trzw + Tr fyx

P#(0z,y) : const coeff diff op defined by

P,-”‘(az,y)e«z’)’)’(“”x)> = P,-(W,x)e<(z7y)’(w’x)> (z,we Sym,,y,x €M, q)
Proposition 3.2 (Bernstein-Sato identity)

b-functions for cplx parameters s = (s1,s3) :

d , n—d
bo(s) = .Hl(sl + 43t - %l)kl_ll(sl +5 + T L),
j= _
3 . n—d
boa(s) = [L(s2 + 45 = 1) (2 + 5 = B [1 (51 + 2 + 231 = f51)
=1 k=1

v
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b-functions

inner product in We: {(z,y), (w,x)) = Trzw + Tr fyx

P#(0z,y) : const coeff diff op defined by

P,-”‘(82,},)e<(z’y)’(“”x)> — Pi(w,x)eE)(wxX) (7 weSym,, y, xe M, )

Proposition 3.2 (Bernstein-Sato identity)

b-functions for cplx parameters s = (s1,s3) :

d , n—d
bo(s) = .Hl(sl + 43t - %l)kl_ll(sl +5 + T L),
j= _
d 3 . n—d
boa(s) = [1(s2+ 4 =G (2 + 5 =5 [ (st + 2+ 21 = 51
=1 k=1

= Bernstein-Sato identity:

Pf(az,y)(Pl(zay)51+1p2(zvy)52> = b1o(s1,9)Pi(z,y)* Pa(z,y)%,

P3 (02) (P1(2,y)7 Palz, )™ %) = boa(s1, 2)Pa(z,y)™ Pa(z,9).

v
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Enhanced zeta integral and its meromorphic continuation

Enhanced positive cone

Return back to REAL WORLD R
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Enhanced zeta integral and its meromorphic continuation

Enhanced positive cone

Return back to REAL WORLD R

breaks u

Unique open orbit /C P, several open orbits /R
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Enhanced zeta integral and its meromorphic continuation

Enhanced positive cone

Return back to REAL WORLD R

. . break:
Unique open orbit /C reae ip,

several open orbits /R
Among open orbits, get interested in enhanced positive cone:
Q=QxM;4(R)
Q = Sym; (R), nd(R): full rank matrices
and ...
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Enhanced zeta integral and its meromorphic continuation

Enhanced positive cone

Return back to REAL WORLD R

. . break:
Unique open orbit /C reae ip,

several open orbits /R
Among open orbits, get interested in enhanced positive cone:
Q=QxM;4(R)
Q = Sym; (R), nd(R): full rank matrices

and ... enhanced zeta distribution:

Zs(i9,5) = f o(2,y)P1(2,y)* Palz, y)* dzdy
Q

- detzsldzf det( Z 7
Lymﬁ(m( ) Mn,d(m‘ (ty 0)

s=(s1,%)€C? (z,y)e S (W), dz,dy: Lebesgue measures

s
dy
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Enhanced zeta integral and its meromorphic continuation

Meromorphic continuation

Zﬁ(go,s) converges if Res;,Resy » 0 s €2 : meromorphic cont

K. Nishiyama (AGU) Enhanced Zeta Distribution 2018/06/18 11 /23



Enhanced zeta integral and its meromorphic continuation

Meromorphic continuation

Zﬁ(go,s) converges if Res;,Resy » 0 s €2 : meromorphic cont
First we need a gamma factor:

(@) Tl 3) - Tlor— 452 = [T} — 52)
Fo(s) =Ta(s1+ T2 Ta(s2 + ) Ty(s2 + §) Thoalst + 52 + 251)
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Enhanced zeta integral and its meromorphic continuation

Meromorphic continuation

Zﬁ(gp,s) converges if Res;,Res, » 0 v 2

: meromorphic cont
First we need a gamma factor:

Me(a) =T(@)M(a—3) Tla—51) =TT Ma -5
Fo(s) =Ta(s1+ T2 Ta(s2 + ) Ty(s2 + §) Thoalst + 52 + 251)

Theorem 3.3 (Meromorphic Continuation)

The zeta integral normalized by the gamma factor
= Za(e9)
Fa(s) 2

is extended to an entire function in s = (s1,s) € C2, Vo e # (W)
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Enhanced zeta integral and its meromorphic continuation

Meromorphic continuation

Zﬁ(gp,s) converges if Res;,Res, » 0 v 2

: meromorphic cont
First we need a gamma factor:

_ k i
(@) F(a=3) - Tla— 51 = [T (@ - 5
Fo(s) =Tals1+ 1) Tals2 + G2 Ta(s2 + 5) Thod(s1 + 52 + 25
Theorem 3.3 (Meromorphic Continuation)
The zeta integral normalized by the gamma factor
7~
is extended to an entire function in s = (s1, %) € C?,Yp € # (W)

wo Zs (i, s) extends to a meromorphic fun
with possible poles specified by T'&(s)
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Enhanced zeta integral and its meromorphic continuation

Meromorphic continuation

Zﬁ(ap,s) converges if Res;, Resp » 0 s €2 : meromorphic cont
First we need a gamma factor:

(@) F(a=3)- Mo =5 = [l = 57)
Fo(s) =Ta(s1+ T2 Ta(s2 + ) Ty(s2 + §) Thoalst + 52 + 251)

Theorem 3.3 (Meromorphic Continuation)
The zeta integral normalized by the gamma factor
7~
rﬁ (S) Q(gp7 5)
is extended to an entire function in s = (s1,s) € C2, Vo e # (W)

wo Zs (i, s) extends to a meromorphic fun
with possible poles specified by T'&(s)

Remark 3.4
The case for d = 1 is already studied by Suzuki [Suz79]

4
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Fourier transform and a functional equation

Fourier transform

Write Z = (z,y) & recall inner product on W = Sym,,(R) @ M, 4(R):
(Z,wy=Trzw + Tr tyx for Z=(z,y),w=(w,x)e W
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Fourier transform and a functional equation

Fourier transform

Write Z = (z,y) & recall inner product on W = Sym,,(R) @ M, 4(R):
(Z,wy=Trzw + Tr tyx for Z=(z,y),w=(w,x)e W

Euclidean Fourier transform .#¢ = ¢ is defined as usual:

P(w) _f w(g)efzni@mdg, 1;(2) = 2(z_l)f w(w)ezﬂi<w,adw
w %
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Fourier transform and a functional equation

Fourier transform

Write Z = (z,y) & recall inner product on W = Sym,,(R) @ M, 4(R):
(Z,wy=Trzw + Tr tyx for Z=(z,y),w=(w,x)e W
Euclidean Fourier transform .#¢ = ¢ is defined as usual:

~

so(vT/)—f p(3)e2mE G5 (3) = 27" f P72 g
w w

Want to consider the FT of the distribution:

(det z) |det<

V4
t

y>|52 7eQ
y 0

K (2) =

0 otherwise.

K. Nishiyama (AGU)
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Fourier transform and a functional equation

Hyperfunction =;

Need one more notation: define hyperfunction
=s(W) = P1(+0 — 2miw, x)* P (40 — 2miw, x)*
. . d v —2miw X\
= I‘J[ra det(v — 2miw)™ ((—1) det( 0 )) ,
where v € Q = Sym; (R) moves to 0 in the positive cone.
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Fourier transform and a functional equation

Hyperfunction =;

Need one more notation: define hyperfunction
=s(W) = P1(+0 — 2miw, x)* P (40 — 2miw, x)*

= IVI?S det(v — 2miw)™ <(_1)d det( v —t2X7riw )(;))527

where v € Q = Sym; (R) moves to 0 in the positive cone.
=s(w) should be interpreted as

J Zs(w)p(w)dw = IimJ Pi(v —2miw, x)* Pa(v — 2miw, x)2 p(w)dw
w vio Jw
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Hyperfunction =;

Need one more notation: define hyperfunction
=s(W) = P1(+0 — 2miw, x)* P (40 — 2miw, x)*

= Ivl[?) det(v — 2miw)™ <(_1)d det( v —t2X7riw )(;))527

where v € Q = Sym; (R) moves to 0 in the positive cone.
=s(w) should be interpreted as

J Zs(w)p(w)dw = IimJ Pi(v —2miw, x)* Pa(v — 2miw, x)2 p(w)dw
w vio Jw

If Res; = 0 and Res, > 0, we can take v | 0 inside the integral, and get
Zs(W) = (—2mi)mst(n=d)s2 py ()5 P, ()%

with an appropriate choice of the branch of exponents.
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Need one more notation: define hyperfunction
=s(W) = P1(+0 — 2miw, x)* P (40 — 2miw, x)*

= Ivl[?) det(v — 2miw)™ <(_1)d det( v —t2X7riw )(;))527

where v € Q = Sym; (R) moves to 0 in the positive cone.
=s(w) should be interpreted as

J Zs(w)p(w)dw = IimJ Pi(v —2miw, x)* Pa(v — 2miw, x)2 p(w)dw
w vio Jw

If Res; = 0 and Res, > 0, we can take v | 0 inside the integral, and get
Zs(W) = (—2mi)mst(n=d)s2 py ()5 P, ()%
with an appropriate choice of the branch of exponents.

In particular, we get : =(g0)(W) = 1 (constant function)
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Fourier transform and a functional equation

Fourier transform of K"

Theorem 4.1 (Fourier transform of rel inv)

Fourier transform of K is given by

L l’(+ C(S) E d+1 n
r (51+d2 )Ta(s2+2) Fog(si+s2+ ‘51) Fa(=2) ——(s1+5=),—(s2+7)
where () '
(s) = 2m) 22D, Ty(a) = [T~ 55Y)
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Fourier transform and a functional equation

Fourier transform of K"

Theorem 4.1 (Fourier transform of rel inv)

Fourier transform of K is given by

1 K+ _ c(s) =
I (51+d2 )Ta(s24+5) Tnoa(s1+52+ —51) Fo(==2)

~(s1+ %), ~(s2+3)
where
n(n—1)

c(s) = (2m) T2, () = [T, M (@ - 3)

In particular, K~ has a pole at s = —(d + 1, n) and there the first
residue is a constant multiple of the delta distribution:

1 Fd(52 + %) rd(—Sz) K
c(s) M5(s) * ls=—1(d+1,n)
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Fourier transform and a functional equation

Functional equation

Corollary 4.2

If ¢ € /(W) is supported in the closure of the enhanced positive cone Q,
we get a functional equation:

Z5 (P s1,52)
Fs(s) %

C(S)(_Qwi)_(”51+(n_d)52+ n(n2+1))

(0 — (51 4 9EL) (o) 4 1
Fd(52+%)rd(—s2) Zalei—(at57), ~(2 4 2))
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Fourier transform and a functional equation

Functional equation

Corollary 4.2

If ¢ € /(W) is supported in the closure of the enhanced positive cone Q,
we get a functional equation:

Z5(P; s1,52)
[&(s)

C(S)(_zﬁi)_(”51+(n_d)52+ n(n+1))

2 Zx (o —(s1 + @) (4 D))
Fa(s2+ 91) Tg(—s2) (e +1) :
—d
ni -?-i,, dis +n(n+1) Hj‘le sin(sp + %)W y
(—27Ti) aF((=a)ez

2

Zs(pi—(s1+ HL), —(2+ )
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Idea of Proof

is straightforward
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Idea of Proof

- is straightforward However, we need two facts:

Fourier transform of quadratic form (generalization of Epstein zeta
integral) proved by J.L. Clerc [Cle02] (see below)

Theorem 5.1 (Clerc [Cle02, Th 2])

For a representation E = M, 4(R) of V; = Sym(R), Fourier transform of
the power of the quadratic form Q(y)® = (det 'yy)* is given by

~ Ma(
J?P(y)(det tyy)sdy:ﬂ-*2d(s+4) d 5+ JT/J )(det XX) s— 2dX
E

v

K. Nishiyama (AGU) Enhanced Zeta Distribution 2018/06/18 16 / 23



Idea of Proof

- is straightforward However, we need two facts:

Fourier transform of quadratic form (generalization of Epstein zeta
integral) proved by J.L. Clerc [Cle02] (see below)

Gindikin's Gamma function (cf. Faraut-Koranyi [FK94])
(" 1
§q e T (detz)*Ag(2)dz = (2n) Fa(a+ B+ 22 Mg(o + 2=FH)

Theorem 5.1 (Clerc [Cle02, Th 2])

For a representation E = M, 4(R) of V; = Sym(R), Fourier transform of
the power of the quadratic form Q(y)® = (det 'yy)* is given by

~ Ma(
J?P(y)(det tyy)sdy:ﬂ-*2d(s+4) d 5+ JT/J )(det XX) s— 2dX
E

v
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Idea of Proof

- is straightforward However, we need two facts:

Fourier transform of quadratic form (generalization of Epstein zeta
integral) proved by J.L. Clerc [Cle02] (see below)

Gindikin's Gamma function (cf. Faraut-Koranyi [FK94])

n(n-1)
§q e T2 (detz)*Ay(2)Pdz = (2n) Fa(a+ B+ ) Mg(a + 2=2HL)

Theorem 5.1 (Clerc [Cle02, Th 2])

For a representation E = M, 4(R) of V; = Sym(R), Fourier transform of
the power of the quadratic form Q(y)® = (det 'yy)* is given by

~ Ma(
J?P(y)(det tyy)sdy:ﬂ-*2d(s+4) d 5+ J"l/} )(det XX) s— 2dX
E

v

The calculation is a fun, but it is too much involved and we omit details
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Zeta integrals associated with orbits

Further problems

So far, we could manage the enhanced positive cone J
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Zeta integrals associated with orbits

Further problems

So far, we could manage the enhanced positive cone

Case of bilinear forms

V = Sym,(R) > (n+ 1) open orbits Q(p, q) determined by signature
zeta distributions: Z(, (¢, s) = ©(z)|det z|°dz

) . Jp,q)
Gamma factors and functional equations
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So far, we could manage the enhanced positive cone )

Case of bilinear forms
V = Sym,(R) > (n+ 1) open orbits Q(p, q) determined by signature

zeta distributions: Z(, (¢, s) = f ©(z)|det z|°dz

) . Jp,q)
Gamma factors and functional equations

- complete results obtained by Satake-Faraut [SF84]

In our case, there appear more open orbits:

Open orbit O < (z,y) : z€ Q(p, q) and signature of z7 |,
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Zeta integrals associated with orbits

Further problems

So far, we could manage the enhanced positive cone )

Case of bilinear forms
V = Sym,(R) > (n+ 1) open orbits Q(p, q) determined by signature

zeta distributions: Z(, (¢, s) = ©(z)|det z|°dz

) . Jp,q)
Gamma factors and functional equations

- complete results obtained by Satake-Faraut [SF84]

In our case, there appear more open orbits:
Open orbit O < (z,y) : z€ Q(p, q) and signature of z7 |,
Problem 6.1

Determine functional equation for arbitrary open orbits J
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Further and Further Problems

Another big issues are:

locate all poles (and zeros) (We only determined possible poles)
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Further and Further Problems

Another big issues are:

locate all poles (and zeros) (We only determined possible poles)

compute residues

These are future subjects
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Jumbles

@ Why we are interested in the enhanced zeta integrals? J
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Jumbles

@ Why we are interested in the enhanced zeta integrals? J

Here are some naive reasons/expectations
- opinions/comments are welcome
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Jumbles

@ Why we are interested in the enhanced zeta integrals? J

Here are some naive reasons/expectations
-+ - opinions/comments are welcome

It is a rare example of explicit Functional Egs in the case of several
variables (with several fundamental relative invts)

However, 3 generaltheorey for several cplx variables by Fumihiro Sato
[Sat82a] [Sat83] [Sat82b]
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However, 3 generaltheorey for several cplx variables by Fumihiro Sato
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Kernel Kt was used to construct intertwiners between degenerate
principal series (N-@rsted [NOr18])
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@ Why we are interested in the enhanced zeta integrals? J

Here are some naive reasons/expectations
-+ - opinions/comments are welcome

It is a rare example of explicit Functional Egs in the case of several
variables (with several fundamental relative invts)

However, 3 generaltheorey for several cplx variables by Fumihiro Sato
[Sat82a] [Sat83] [Sat82b]

Kernel Kt was used to construct intertwiners between degenerate
principal series (N-@rsted [NOr18])

v~ some information of images and kernels? small submodules?
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Jumbles

@ Why we are interested in the enhanced zeta integrals? J

Here are some naive reasons/expectations
-+ - opinions/comments are welcome

It is a rare example of explicit Functional Egs in the case of several
variables (with several fundamental relative invts)

However, 3 generaltheorey for several cplx variables by Fumihiro Sato
[Sat82a] [Sat83] [Sat82b]

Kernel Kt was used to construct intertwiners between degenerate
principal series (N-@rsted [NOr18])

v~ some information of images and kernels? small submodules?

w~~> analytic cont of intertwiners and their residues
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Jumbles continued!

W = V @ E is isomorphic to a boundary orbit of the positive cone
Sym;. ,(R) related to unitary highest weight module (Wallach set)
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Jumbles continued!

W = V @ E is isomorphic to a boundary orbit of the positive cone
Sym;. ,(R) related to unitary highest weight module (Wallach set)

Our results related to a further continuation of submodules restricted

to a certain subgroup?
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The kernel K= can be interpreted as the cplx power of a matrix
coefficient of finite dimensional representation
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Jumbles continued!

W = V @ E is isomorphic to a boundary orbit of the positive cone
Sym;. ,(R) related to unitary highest weight module (Wallach set)
Our results related to a further continuation of submodules restricted
to a certain subgroup?

The kernel K= can be interpreted as the cplx power of a matrix
coefficient of finite dimensional representation

v~ similar theory for Knapp-Stein kernels?
(Barchini-Sepanski-Zierau, Ben-Said-Clerc-Koufany,
Méllers-Oshima-@rsted, - - -)
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Jumbles continued!

W = V @ E is isomorphic to a boundary orbit of the positive cone
Sym;. ,(R) related to unitary highest weight module (Wallach set)
Our results related to a further continuation of submodules restricted
to a certain subgroup?

The kernel K= can be interpreted as the cplx power of a matrix
coefficient of finite dimensional representation

v~ similar theory for Knapp-Stein kernels?
(Barchini-Sepanski-Zierau, Ben-Said-Clerc-Koufany,
Méllers-Oshima-@rsted, - - -)

v~ constructing invariant differential operators as residues?
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Thank you for your attention &
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Thank you for your attention &
Congratulation!! to Prof Kashiwara

; KYOTO PRIZE Philosophy ~ About Kyoto Prize  Laureates  Ever
R

Announcement of the 2018 Kyoto Prize Laureates

BaL

> . ¢ 2 i
Advanced Te:hrrjology
Dr. Karl Deisseroth

@ Determination of b-functions [SKKO81]
@ Algorithm for calculating Fourier transform of zeta integrals [KM75]
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