Connected but not locally connected minimal sets of codimension two foliations

Hiromichi NAKAYAMA

Aoyama Gakuin University, 2014 September.

1 Purpose

Classify the topological types of minimal sets in lower dim. cases (Codim. 2)

minimal set $\stackrel{\text{def}}{\iff}$ a closed invariant set and minimal w.r.t. the inclusion.

In this talk, the progress of my study on 'Warsaw circle with inf. many singular arcs' $\times S^1$

In 'Foliations 2012 in Łódź', I talked about

Theorem.

There is a C^{∞} diffeomorphism of $S^1 \times \mathbf{R}$ with a compact connected but not path-connected minimal set containing arcs.

However the construction was complicated. **Recent improvement**: simple construction (5 pages) and easy properties (3 pages) **Key point**: 'Warsaw circle is an inverse limit of circles'

2 Warsaw circle

$$\begin{split} S^1 &= \mathbf{R}/\mathbf{Z} \\ \chi_0 : S^1 - \{0\} \to \mathbf{R} \text{ defined by} \\ \left\{ \begin{array}{ll} \chi_0(x) &= \sin\frac{1}{x} & \text{if } & -\frac{1}{\pi} \leq x \leq \frac{1}{\pi}, x \neq 0, \\ \chi_0(x) &= 0 & \text{if } & \frac{1}{\pi} \leq |x| \leq \frac{1}{2} \end{array} \right. \end{split}$$

Def 1. The closure of the graph of χ_0 (graph χ_0) is called the Warsaw circle X_0 .

<u>3</u> Warsaw circle is an inverse limit of circles

$$a_n = \frac{2}{(4n-1)\pi} \text{ for } n = 1, 2, \cdots$$

Then $\sin \frac{1}{a_n} = -1$.
We define a function $g_n : \left[-\frac{1}{2}, \frac{1}{2}\right] \to \mathbf{R}$
 $(n = 1, 2, \cdots)$ by

$$g_n(x) = \begin{cases} \sin \frac{1}{x+a_n} & \text{if } 0 < x \le \frac{1}{\pi} - a_n \\ -\sin \frac{1}{-x+a_n} & \text{if } a_n - \frac{1}{\pi} \le x < 0 \\ 0 & \text{if } \frac{1}{\pi} - a_n \le |x| \le \frac{1}{2} \end{cases}$$

 $Y_n = \left(\text{graph } g_n / (-\frac{1}{2}, 0) \sim (\frac{1}{2}, 0) \right)$ circles $\cup (\{0\} \times [-1, 1])$ We define a projection $\pi_n: Y_{n+1} \to Y_n$ s.t.

$$\pi_n(x,y) = \begin{cases} (x+a_{n+1}-a_n,y) \\ \text{if } a_n - a_{n+1} \le x \le \frac{1}{\pi} - a_{n+1} \\ (0,y) \\ \text{if } a_{n+1} - a_n \le x \le a_n - a_{n+1} \\ (x+a_n - a_{n+1},y) \\ \text{if } -\frac{1}{\pi} + a_{n+1} \le x \le a_{n+1} - a_n \end{cases}$$

That is, the map π_n collapses $\{(x, y); a_{n+1} - a_n \leq x \leq a_n - a_{n+1}\}$ into the y-axis horizontally.

For the Warsaw circle X_0 , we define $h_n: X_0 \to Y_n$ s.t.

$$h_n(x,y) = \begin{cases} (x-a_n,y) & \text{if } a_n \leq x \leq \frac{1}{\pi} \\ (0,y) & \text{if } |x| \leq a_n \\ (x+a_n,y) & \text{if } -\frac{1}{\pi} \leq x \leq -a_n \end{cases}$$

 h_n collapses $\{(x, y); |x| \le a_n\}$ into the y-axis horizontally.

Then $\pi_n \circ h_{n+1} = h_n$. The maps $\{h_n\}$ induce a homeomorphism from the Warsaw circle to the inverse limit (Y_n, π_n) .

4 Warsaw circle with inf. many singular arcs

In order to prove the theorem, we insert infinitely many singular arcs into the circle. $\{b_n\}_{n\in\mathbb{Z}} > 0$: a sequence s.t. $\sum_{n\in\mathbb{Z}} b_n < \infty$. ω : an irrational number

$$\chi: S^1 - \{n\omega; n \in \mathbb{Z}\} \to \mathbb{R}$$
 defined by

$$\chi(x) = \sum_{n \in \mathbf{Z}} b_n \chi_0(x - n\omega).$$

Def 2. graph χ in $S^1 \times \mathbf{R}$ is called a Warsaw circle with inf. many singular arcs, denoted by X.

 $p_1: S^1 \times \mathbf{R} \to S^1$; the proj. to the 1st factor. $S_n := p_1^{-1}([n\omega]) \cap X$ is called a *singular arc*, whose length is $2b_n$.

5 History

- (1) Jones constructed a minimal homeomorphism of the Warsaw circle with infinitely many singular arcs X,
 (introduced in the book of Gottschalk and Hedlund, 1955)
- (2) Walker constructed a homeomorphism of S¹ × R whose minimal set is homeomorphic to X in 1991.

(3) (Necessary conditions) $f: S^1 \times \mathbf{R} \to S^1 \times \mathbf{R}$; homeom s.t. X is a minimal set. f maps a singular fiber onto a singular fiber. Thus we can define $\rho_f: S^1 \to S^1$ by

$$\rho_f(x) = p_1 f(x, y)$$

for any y satisfying $(x, y) \in X$.

Theorem. (N—, 2012)

$$\omega$$
: irrational number
 $X = \overline{\operatorname{graph} \chi} (\chi(x) = \sum_{n \in \mathbb{Z}} b_n \chi_0(x - n\omega))$
If b_n satisfies that
 $\limsup_{n \to \infty} \frac{b_{n+1}}{b_n} \leq 1$ and $\limsup_{n \to -\infty} \frac{b_n}{b_{n+1}} \leq 1$,
 \Longrightarrow there is no C^1 -diffeom f of $S^1 \times \mathbb{R}$
s.t. ρ_f is a rotation and X is a minimal set.

Walker's example is not of C^1 .

b Inverse limit of circles for the construction For the construction of our C^{∞} -diffeomorphism, we use an inverse limit of circles whose singular arcs are not vertical.

Preparation:

$$\begin{array}{l} q_n: \text{ so large integers } (q_1 = 2) \\ L_n \in \mathbf{Z}_+: \ L_1 = 3 \text{ and } L_n = \frac{2q_n}{L_1 L_2 \cdots L_{n-1}} - 1. \\ X_n = \{(x, y) \, ; \, x \in \mathbf{R} / \mathbf{Z}, |y| \leq 1\} \\ \text{We define a simple closed curve} \\ C_n : \mathbf{R} / L_n \mathbf{Z} \to X_n \text{ by} \\ C_n(t) = (t, L_1 \cdots L_{n-1} t - \frac{1}{2}) \\ & \text{if } 0 \leq t \leq \frac{1}{L_1 \cdots L_{n-1}} \\ C_n(t) = (-t + \frac{2}{L_1 \cdots L_{n-1}}, \frac{L_1 \cdots L_{n-1} q_n}{q_n - L_1 \cdots L_n} (t - \frac{L_n}{q_n}) - \frac{1}{2} \\ & \text{if } \frac{1}{L_1 \cdots L_{n-1}} \leq t \leq \frac{L_n}{q_n} \end{array}$$

and
$$C_n\left(t+\frac{L_n}{q_n}\right) = R_{\frac{1}{q_n}}C_n(t)$$

We will use the inverse limit (S^1, Ψ_n) for the construction of a C^{∞} diffeomorphism.

7 Overview of the construction of f

(in the manner of Handel and Fayad-Katok) For $n = 1, 2, \dots$, we define θ_n by $\theta_n = \sum_{i=1}^n \frac{1}{q_i}$. Let R_{θ_n} denote the θ_n -rotation $R_{\theta_n}(x, y) = (x + \theta_n, y)$ in X_n . We choose a C^{∞} embedding $\varphi_n : X_{n+1} \to X_n$ sufficiently near C_n satisfying

(a)
$$R_{\theta_n} \circ \varphi_n = \varphi_n \circ R_{\theta_n}$$

(b) $\varphi_n(\ell_{n+1}) = \ell_n$ for
 $\ell_n = \{C_n(t); 0 \le t \le 1/(L_1L_2\cdots L_{n-1})\}.$

(c) $\varphi_n(X_{n+1}) \subset \{(x,y) \in X_n; |y| < \frac{3}{4}\}.$

Let $\Phi_n = \varphi_1 \circ \varphi_2 \circ \cdots \circ \varphi_n$. Then $\Phi_1(X_2) \supset \Phi_2(X_3) \supset \cdots$. $X = \bigcap_n \Phi_n(X_{n+1})$ will be a minimal set.

We give diffeomorphisms $f_n: X_1 \to X_1$ satisfying

(d)
$$f_{n+1} = f_n$$
 outside $\Phi_n(X_{n+1})$ and
(e) $f_{n+1}(x, y) = \Phi_n R_{\theta_{n+1}} \Phi_n^{-1}(x, y)$
if $(x, y) \in \Phi_n(X_{n+1})$ and
 $\Phi_n^{-1}(x, y) \in \{(x, y); |y| \le \frac{3}{4}\}.$

If we choose f_{n+1} sufficiently near f_n , then f_n converges to a C^{∞} diffeomorphism fof X_1 as $n \to \infty$. Then f is a C^{∞} diffeomorphism s.t. $\bigcap_n \Phi_n(X_{n+1})$ is a compact connected but not path-connected minimal set of fcontaining the arc ℓ_1 .

[1] Fayad and Katok, *Constructions in elliptic* dynamics, Ergod. Th. & Dynam. Sys.(2004),**24**, 1477–1520. [2] W. H. Gottschalk, and G. A. Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, Vol. 36. American Mathematical Society, Providence, R. I., 1955.

- [3] M. Handel, A pathological area preserving C^{∞} diffeomorphism of the plane, Proc. AMS. **86** (1982) 163–168.
- [4] R. Walker, Periodicity and decomposability of basin boundaries with irrational maps on prime ends, Trans. Amer. Math. Soc. 324 (1991), no. 1, 303–317.

8 Minimal sets

minimal sets	Is there a diffeom
\mathfrak{M}	$f: \Sigma \to \Sigma$ whose
	minimal set is \mathfrak{M} ?
(1) periodic points	C^{∞}
(2) circle	C^{∞}
(3) torus	C^{∞}
(4) Cantor set	C^{∞} (horse shoe)
(5) Sierpiński T^2 -set	C^2 by McSwiggen 1993

minimal sets	$f: \Sigma \to \Sigma$; diffeo ?
(6) pseudo circle	C^{∞} by Handel 1982
(7) "Warsaw circle"	discuss here
(8) Fayad-Katok	C^{∞}