2024年度 実力試験 専門問題

2025年1月14日(火) 14:15~15:45 (90分)

解答上の注意

- 問題は全部で 10 題ある. そのうち <u>3 題</u> を選択して答えよ.
 但し、次の A, B から、それぞれ、1 題以上を選択すること.
 - A . 解析学 II +解析学 IIB,解析学 III,応用初等代数+代数学 I,集合と位相,複素解析 I,確率統計(以上 6 題)
 - B. 幾何学 I + 幾何学 II, 代数学 II, 解析学 IV, 微分方程式 II + フーリエ解析(以上 4 題)
- 各問題ごとに別々の解答用紙を使用し、選択した問題番号を所定の欄に明記すること. 問題番号が正しく記入されていない答案は採点しない.
- すべての解答用紙に学生番号と氏名を記入し、解答用紙はすべて提出すること.
- 解答欄が不足する場合は裏面を使ってよい、但しその旨を表面に明記すること、
- 試験開始から 30 分経過した後は、解答用紙を提出の上、退出を認める.

1 (A. 解析学 II +解析学 IIB)

- (1)~|x|<1 とする. 級数 $\sum\limits_{n=1}^{\infty}\left(\sin nt\right)x^n$ は t に関して $\mathbb{R}=(-\infty,\infty)$ 上で一様収束することを示せ. 一様収束した関数を f(t,x) と書く.
- (2) $g(x) = \int_0^{\pi} f(t, x) dt$ を x のべき級数として表せ.
- (3) 関数 g(x) を求めよ. (初等関数、つまり三角関数、指数・対数関数などを用いて簡潔な形に表せ.)

2 (A. 解析学 III)

ベクトル値関数

$$r(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta), \ (\theta, \varphi) \in \left[0, \frac{\pi}{2}\right] \times [0, 2\pi)$$

が定める xyz-空間上の曲面 $S:(x,y,z)={m r}(heta,arphi)$ とスカラー場

$$f(x, y, z) = \frac{x^2 y^2}{2}$$

について,以下の問に答えよ.

- (1) 曲面 S の概形を図示せよ.
- (2) 曲面 S の表面積を求めよ.
- (3) $\Delta f = \nabla \cdot \nabla f$ を求めよ. ただし, ∇ はナブラ記号 $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ を表す.
- (4) 曲面 S 上の面積分 $\iint_S \Delta f \ dS$ を求めよ.

3 (A. 応用初等代数+代数学 I)

以下の問に答えよ.

- (1) $55^{2024} \pmod{55}$ と $55^{2024} \pmod{14}$ を求めよ. また、 55^{2024} を 770 で割った余りを求めよ.
- (2) 8 次対称群 S_8 の元 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 7 & 4 & 8 & 2 & 3 & 5 & 1 \end{pmatrix}$ を巡回置換分解し、 σ の位数を求めよ、また、 σ^5 を求めよ、
- (3) $f: G \to G'$ を群準同型写像とする. このとき,

$$\operatorname{Im} f := \{ f(g) \, | \, g \in G \}$$

はG'の部分群であることを示せ.

4 (A. 集合と位相)

ℝ 上の関数

$$f(x) := \begin{cases} \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

に対して, $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ を次のように定める.

$$d(x, x') := |f(x) - f(x')| \qquad (x, x' \in \mathbb{R})$$

 $A := \{x \in \mathbb{R} \mid d(0,x) < 1\}, B := \{x \in \mathbb{R} \mid |x| < 1\}$ とおくとき、以下の問に答えよ.

- (1) f は単射であることを示せ.
- (2) d は \mathbb{R} 上の距離関数であることを示せ.
- (3) A の表す部分を数直線上に図示せよ.
- (4) 距離空間 (\mathbb{R},d) において、点 0 は B の内点かどうか調べよ.

5 (A. 複素解析 I)

$$f(z) = \frac{1}{z^3 + 8i}$$
 とする.

- (1) f(z) の孤立特異点をすべて求めよ.
- (2) 原点を中心とする半径 R の円のうち、虚部が 0 以上の部分を C_1 とするとき、 $\lim_{R\to\infty}\int_{C_1}f(z)\,dz$ の値を求めよ、ただし、 C_1 は始点を (R,0) とし、終点を (-R,0) とする.
- $(3) \int_{-\infty}^{\infty} \frac{1}{x^3 + 8i} dx \ \text{の値を求めよ}.$

6 (A. 確率統計)

(1) p を 0 を満たす定数, <math>n を自然数とし, X を二項分布に従う, つまり, r = 0, 1, ..., n に対し X = r の確率 P(X = r) が

$$P(X = r) = {}_{n}C_{r} p^{r} (1 - p)^{n - r}, \qquad r = 0, 1, ..., n$$

で与えられる確率変数とする.

二項定理 $(x+y)^n = \sum_{r=0}^n {}_n C_r \ x^r \ y^{n-r}$ を用いて次の間に答えよ.

- (i) X の積率母関数 $M(t)=E[e^{tX}]$ を求めよ、ただし、E[Y] は確率変数 Y の期待値を表す、
- (ii) X の期待値が np, 分散が np(1-p) であることを示せ.
- (2) サイコロを 500 回投げたときの 6 の出る回数を S とするとき, $80 \le S \le 90$ の確率 $P(80 \le S \le 90)$ を,ド・モワブル-ラプラスの定理を用い,次の正規分布表を利用して求めよ.

付表2 正規分布表 I

$$z \to I(z) = \frac{1}{\sqrt{2\pi}} \int_0^z e^{-\frac{x^2}{2}} dx$$

I(z)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.0000	. 0040	.0080	.0120	.0160	.0199	.0239	.027,9	.0319	.0359
0.1	.0398	0438	.0478	.0517	.0557	.0596	0636	.0675	.0714	.0753
0.2	.0793	. 0832	.0871	0910	0948	.0987	1026	-1064	.1103	.1141
0.3	.1179	. 1217	. 1255	1293	-1331	. 1368	1406	. 1443	.1480	. 1517
0.4	. 1554	1591	1628	1664	1700	. 1736	1772	1808	.1844	. 1879
0.5	.1915	.1950	. 1985	2019	2054	2088	2123	.2157	.2190	. 2224
0.6	. 2257	2291	.2324	2357	2389	2422	2454	2486	.2517	.2549
0.7	. 2580	2611	.2642	2673	2704	.2734	.2764	.2794	. 2823	.2852
0.8	.2881	2910	2939	2967	2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	3186	.3212	3238	3264	. 3289	3315	. 3340	. 3365	. 3389
1.0	.3413	3438	.3461	3485	-3508	3531	3554	3577	. 3599	.3621
1.1	. 3643	3665	.3686	3708	3729	3749	3770	.3790	.3810	. 3830
1.2	. 3849	3869	.3888	3907	. 3925	. 3944	3962	.3980	. 3997	.4015
1.3	.4032	4049	.4066	4082	4099	4115	4131	4147	.4162	.4177
1.4	.4192	4207	.4222	4236	.4251	4265	4279	.4292	.4306	. 4319
1.5	. 4332	4345	4357	4370	4382	4394	4406	4418	.4429	. 4441
1.6	. 4452	4463	.4474	4484	4495	4505	4515	4525	. 4535	. 4545
1.7	. 4554	4564	.4573	4582	4591	.4599	.4608	.4616	. 4625	.4633
1.8	. 4641	4649	.4656	4664	4671	4678	4686	-4693	.4699	.4706
1.9	. 4713	4719	. 4726	4732	4738	4744	.4750	- 4756	.4761	. 4767

7 (B. 幾何学 I +幾何学 II)

空間において、実数パラメータu, vにより表される曲面 Σ を

$$\begin{cases} x = u + 2v \\ y = 3v \\ z = -\frac{1}{4}u^2 - uv \end{cases}$$

により与えるとき、 Σ 上の点 P = (2,3,0) について、次の問に答えよ.

- (1) 点 P におけるガウス曲率 K と平均曲率 H を求めよ
- (2) 点 P における接平面の方程式を求めよ.
- (3) 点 P を通る直線で、 Σ に含まれるものをすべてあげよ(直線の方程式を求めること).

8 (B. 代数学 II)

- (1) 整数環 \mathbb{Z} のイデアル $I_1 = 6\mathbb{Z}$, $I_2 = 9\mathbb{Z}$ について、以下のイデアルを単項イデアルの形で表せ、この問題については結果のみ答えればよい。
 - (i) $I_1 \cap I_2$ (ii) $I_1 + I_2$ (iii) $I_1 I_2$
- (2) ガウス整数環 $\mathbb{Z}[i]$ において、 $\alpha=19+8i$ と $\beta=11+10i$ の最大公約元 γ を求めよ.また $\alpha x+\beta y=\gamma$ となるような $x,y\in\mathbb{Z}[i]$ の組を 1 つ求めよ.
- (3) ガウス整数環 $\mathbb{Z}[i]$ における 53 の素元分解を求め、それを用いて $53^2=a^2+b^2$ を満たす整数の組 (a,b) (ただし a>b>0) を求めよ.

9 │ (B. 解析学 IV)

以下の問に答えよ. ただし、ℝ上の連続関数がルベーグ可測であることは認めてよい.

(1) ルベーグ積分における単調収束定理を利用して、次の極限値を求めよ.

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}|x|\exp\left(-|x|^2-\frac{|x|^3}{n}\right)dx$$

(単調収束定理の内容と、定理が適用できる理由を述べること.)

(2) ルベーグ積分におけるルベーグの収束定理を利用して、次の極限値を求めよ.

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{1 + e^{-(x-n)^2}}{1 + x^2} dx$$

(ルベーグの収束定理の内容と、定理が適用できる理由を述べること.)

10 (B. 微分方程式 II +フーリエ解析)

 C^1 級関数 $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ に関する 1 階双曲型偏微分方程式のコーシー問題

$$\frac{\partial f}{\partial t}(t, x) - \frac{\partial f}{\partial x}(t, x) = 0, \quad -\infty < t < \infty, \quad -\infty < x < \infty$$
$$f(0, x) = f_0(x), \quad -\infty < x < \infty$$

を考える.ここに, $f_0: \mathbb{R} \to \mathbb{R}$ は連続的微分可能で周期 2π の周期関数とする.この問題に対する次の 3 通りの解析について,下の各問に答えよ.

解析 A

問題の形から、関数 f が解ならば、各 $t\in\mathbb{R}$ に対して 1 変数関数 $x\mapsto f(t,x)$ は周期 2π の周期関数と考えられる。そのフーリエ展開

$$f(t, x) = \sum_{n = -\infty}^{\infty} \phi_n(t)e^{inx}, \quad -\infty < x < \infty$$
 (A0)

を関数 f の表現形式とみなして、各変数について形式的に項別微分すると、次の式が得られる:

$$\frac{\partial f}{\partial t}(t, x) = \sum_{n = -\infty}^{\infty} \phi'_n(t)e^{inx}, \ \frac{\partial f}{\partial x}(t, x) = \sum_{n = -\infty}^{\infty} in\phi_n(t)e^{inx}$$

これらは等しいので、フーリエ展開の一意性により、各n に対して次の等式が成り立たなければならない:

$$\phi_n'(t) = in\phi_n(t) \tag{A1}$$

さらに、初期関数 f_0 のフーリエ展開を

$$f_0(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}, \quad -\infty < x < \infty$$
 (A2)

と表せば、フーリエ展開の一意性により、各nに対して次の等式が成り立たなければならない:

$$\phi_n(0) = c_n \tag{A3}$$

こうして得られた常微分方程式の初期値問題 (A1), (A3) を解けば,

$$\phi_n(t) = c_n e^{int}$$

となる. これを (A0) に代入することにより

$$f(t, x) = \sum_{n = -\infty}^{\infty} c_n e^{in(t+x)}, \quad -\infty < x < \infty$$
 (A4)

を得る. これを初期関数 f_0 のフーリエ展開 (A2)

$$f(t, x) = f_0(t+x), (t, x) \in \mathbb{R} \times \mathbb{R}$$
(A5)

と書けることがわかる.

解析 B

関数 f として、次の形のものを考える:

$$f(t, x) = f_0(t+x), (t, x) \in \mathbb{R} \times \mathbb{R}$$
 (B0)

これを各変数について偏微分した結果は

$$\frac{\partial f}{\partial t}(t, x) = f_0'(t+x) = \frac{\partial f}{\partial x}(t, x)$$

となることより,次の等式が成り立つことがわかる:

$$\frac{\partial f}{\partial t}(t, x) - \frac{\partial f}{\partial x}(t, x) = 0$$

さらに、式(B0)において、t=0とおけば、

$$f(0, x) = f_0(x), \quad -\infty < x < \infty$$

となるので、式 (B0) によって定義された関数 f は所与のコーシー問題の解である.

解析 C

関数 f を所与のコーシー問題の解とする.任意の $x \in \mathbb{R}$ に対し,1 変数関数 $t \mapsto f(t, x-t)$ を t について微分すると,

$$(f(t, x-t))' = \frac{\partial f}{\partial t}(t, x-t) - \frac{\partial f}{\partial x}(t, x-t) = 0$$

となる. これは, f(t, x-t) が t によらないことを意味し, したがって

$$f(t, x-t) = f(0, x-0) = f_0(x), -\infty < t < \infty$$

これより、関数 f は

$$f(t, x) = f_0(t+x), (t, x) \in \mathbb{R} \times \mathbb{R}$$

の形に表されることがわかる.

- 問 1 所与のコーシー問題に関して,解析 A から言えることは下の主張のどれか?(複数選択可.選択の理由も述べること.)
- 問 2 所与のコーシー問題に関して、解析 B から言えることは下の主張のどれか?(複数選択可、選択の理由も述べること.)
- 問3 所与のコーシー問題に関して、解析 C から言えることは下の主張のどれか? (複数選択可. 選択の理由も述べること.)

選択肢

- P1 解が存在する.
- P2 解は存在しないか、存在すれば唯一つである.
- P3 解は存在して, 唯一つである.
- P4 関数: $(t, x) \mapsto f_0(t+x)$ は解である.
- P5 解があれば、それは関数: $(t, x) \mapsto f_0(t+x)$ である.
- P6 解は関数: $(t, x) \mapsto f_0(t+x)$ と予想される.