学術論文(査読付き)
- Naoki Hashimoto, Kenji Taniguchi and Go Yamanaka,
The Socle Filtrations of Principal Series Representations of SL(3,R)
and Sp(2, R),
Tokyo J. Math. 47 (2024), No.1, 189--243.
- Kenji Taniguchi,
Socle filtrations of the standard Whittaker (g,K)-modules of Spin(r,1),
Kyoto J. Math. 55 (2015), No.1, 43--61.
- Kenji Taniguchi,
Discrete series Whittaker functions on Spin(2n,2),
J. Math. Sci. Univ. Tokyo. 21 (2014), 1--59.
- Kenji Taniguchi,
A construction of generators of Z(so_n),
Josai Mathematical Monographs vol.6 (2013), 93--108.
arXiv:12120607.
- Kensuke Kondo, Kyo Nishiyama, Hiroyuki Ochiai, Kenji Taniguchi,
Closed orbits on partial flag varieties and double flag variety
of finite type,
Kyushu J. Math. 68 (2014), 113--119.
- Kenji Taniguchi,
On the composition series of the standard Whittaker (g,K)-modules,
Trans. Amer. Math. Soc. 365 (2013), 3899--3922.
- Kenji Taniguchi,
On the symmetry of commuting differential operators with
singularities along hyperplanes,
Int. Math. Res. Notices (2004), no. 36, 1845--1867.
- Kyo Nishiyama, Hiroyuki Ochiai, Kenji Taniguchi,
Bernstein Degree and Associated Cycle of Harish-Chandra Modules
-- Hermitian symmetric case --,
Asterisque 273 (2001), 13--80.
- Akihiko Gyoja, Kyo Nishiyama, Kenji Taniguchi,
Invariants for Representations of Weyl Groups, Two-sided Cells, and Modular Representations of
Iwahori-Hecke Algebras,
Adv. Studies in Pure Math. 28 (2000), 105--114.
- Akihiko Gyoja, Kyo Nishiyama, Kenji Taniguchi,
Kawanaka invariants for representations of Weyl groups,
J. Alg. 225 (2000), 842--871.
- Kenji Taniguchi,
On uniqueness of commutative rings of Weyl group invariant
differential operators,
Publ. RIMS, Kyoto Univ., 33 (1997), 257-276.
- Kenji Taniguchi,
Discrete series Whittaker functions of SU(n,1) and Spin(2n,1),
J. Math. Sci. Univ. Tokyo, 3 (1996), 331-377.
|
講究録等(査読無し論文)
- 谷口健二,
Sp(2,R) の主系列表現の組成列について,
京都大学数理解析研究所講究録, 1877 (2014),
pp104--120.
- 谷口健二,
U(n,1) の標準 Whittaker 加群の組成列について,
京都大学数理解析研究所講究録, 1722 (2010),
pp146--153.
- 谷口健二,
F_4 型 Weyl 群不変式の初等的構成法,
京都大学数理解析研究所講究録 1508 (2006), pp119--124.
- 谷口健二(編著),
『群と環の表現論及び非可換調和解析』,
数理解析研究所講究録 1183 (2001).
- 谷口健二,
座標対称性を持つ完全可積分系の一意性について,
第39回実函数論・函数解析学合同シンポジウム講演集録, (2000),
21--37.
- 谷口健二,
SO_0(2n,2) の離散系列 Whittaker 関数について,
京都大学数理解析研究所講究録, 1094 (1999), 11--28.
- 西山享, 落合啓之, 谷口健二,
Bernstein degree and associated cycles of Harish-Chandra modules,
1998年度表現論シンポジウム講演集 (1998), 1--17.
- Kenji Taniguchi,
Differential Operators that Commute with r^{-2}-type Hamiltonian,
Calogero-Moser-Sutherland Models, CRM Series in
Mathematical Physics, Springer, 2000, 451--459.
- 谷口健二,
Weyl 群不変な微分作用素環の一意性について,
京都大学数理解析研究所講究録, 1008 (1997), 65-80.
- 谷口健二,
Discrete series Whittaker functions of SU(n,1),
京都大学数理解析研究所講究録, 909 (1995), 102-112.
- 谷口健二,
Minimal K-type Whittaker functions of discrete series of some
R-rank 1 Lie groups,
京都大学数理解析研究所講究録, 895 (1995), 67-80.
|