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81, Invariant foliations

In Le Calvez’'s talk In this talk

IRind \ﬁ\“\

leaves
foliations dynamically foliations invariant
transverse to the isotopy a— under diffeomorphisms

f maps each leaf
onto a leaf



Examples of invariant foliations

f:T? = T? ;adiffeomorphism

Anosov Diffeom.

Irrational transf.
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Assumption

In this talk, we will respect our attention

to diffeomorphisms of the torus 7

Remark (my original interest)
When can a homeomorphism of R* without

a fixed point be embedded in a flow?
(flowability)

leaf preserving homeoms

— foliation preserving diffeoms )




A homeomorphism which can not be
the time one map of a flow

(by M. Brown)

The other examples
(N-, F. Le Roux)



§ 2, Projectivized bundles

TT’ : the tangent bundle of 7~
PT° ={(zv)ETT*;v=0}/v~kv (k=0)

f:T? = T?: adiffeomorphism
Df :TT? — TT" : the derivative of f

Pf : PT* — PT’ : the diffeom
induced from Df =

000
o0
o
projectivized bundle
V - _H/Hﬂ@

ie. (z,[v]) € PT?, oz
Pf(z,[v]) = (z,[Df (v)])




Lemma. f is tangent to a C~ foliation <3
< There is a C” sectionI': T° — PT”

such that Pf (I'(2)) =T'(f(2))
pr?

(/@) M
Pf ;.

' (one-dimensional
leaves

. EUE

How to find such a section?



One of candidates is minimal sets of Pf
(i.e. closed Pf -invariant sets whih is

minimal w.r.t. the inclusion)

PT?

" a minimal set

2 ’\_f/’




83, Model case

Def. f is tangentially distal
iff inf{HDf”(v)

;nEZ}#O for any v =0

Theorem. (Shigenori Matsumoto, N-, 1997)
If f : T* — T is tangentially distal and minimal
(1.e. all orbits dense),

then there is a C° 1-dim foliation tangent to f .



Sketch of proof

1) To find an invariant C° section for Pf.

— routine work

2) To find a tangent C° foliation.

(not always uniquely integrable)

)

N

the left inferior orbit



000
000
L X
o
84, Properties of PSL(2,R)
Cross ratio for straight lines
i/ (})1’P2’P3’P4) = I)1P3 I)1P4
Pf/ PP,/ PP,
P3 The cross ratio 1s invariant under SL(2,R)

— " because SL(2,R) preserves the area

. _

~  of the triangles

. OPP, | ORP,
2 OP,P,/ OP,P,




How to use the cross ratio.

Here we consider the case when

Pf has two minimal sets M, M.

i.e. there are closed invariant sets M, (i =1,2) in PT"

which are minimal among such closed invariant sets.

Lemma. For any fiber {z} x P', either M, N ({z} x P') or

M, N ({z} x P") consists of a single point.

PT*

PT*




Proof ofTJLemma (by absurdity)

bounded

L
P3P2

Cross ratio

By the minimality of M,, Q,Q, approaches to 0.
On the other hand, Q,0, and Q,Q, are bounded below. I




Then we can

1) find a continuous section between M, and M, .

(N - and Noda, 2005)
2) control all the orbits between M, and M,

by a single orbit between M, and M,. (N-,2007)
1) 2)

continuous section
P @ P72

orbit
orbit




85, Infinitesimal twist along orbits

f:T? = T*; a C? diffeomorphism isotopic to id
f, 1s its 1sotopy (f, =1d, f, = f)

TT” : the unit tangent bundle of 7

Lf :TT? — TT?; a diffeomorphism

\
[ Drw
defined by Zf(z,v) =| f(2), —=
U pro),
f(@)

isotopy f;

\‘Lf(Z,V)

Df,(v)




86, Ruelle invariant

f:T*xR — T? xR : the lift of Zf
with respect to the 1sotopy f,

£"(z,0)

n

p(z)=lm ___ if 1t exists

Def. w:anf -invariant prob. measure of 7~

The Ruelle invariant

R(f)= [ p()du

" Average of the twist along the orbits"



Another def of Ruelle invariant
by Ruelle

G = SL(2,R)

G : the universal cover of G

Let A be an element of G.
iLe. A()EG,A0)=e (O=st=1)
We will define the angle of A
Polar decomposition of A(?)
A(t)=0(1)S(1)
where S(¢) : (positive) symmetric matrix

O(t) : orthogonal matrix

(S(t) =" A1) A(1),0(t) = A(1)S.”)




0(t) := (the angle of O(¢)) € S’

(1) - (0.05 0(t) —sinH(t))
sinf(t) cosO(r)

O(A) € R; the variation of 6(¢)

ForneZ,

Df,,(2)
ydet Df,,,(2)

O(A(z,n))

n

~

G O=sr=l)

A(z,n) = [t >

Lemma. p(z)=lm,



O(A(z,n)) du

n

The Ruelle invariant R, (f) = [ Llim,

Remark. The Ruelle invariant can be defined for

symplectic matrices (by Ruelle).
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Another def of Ruelle invariant
u: an f -invariant measure of T~ by Inaba, N-
mw:TT? — T?; the projection
Then there is a measure von TT"
s.t. (£f).v=v and m.v=u xR —L o T°4«R
A:TT?> =R defined by v y
- TlvT2 Lf 71T2
f(zv)=(f(2),v +Af (z,v)) | |
for (z,v) € T* xR - Df |
Theorem (T. Inaba and N-, 2004) | |

R(f)= [, .0f dv



Outline of proof

By the disintegration theorem,

there is a prob. measure v_ on each fiber {7} x §'

st [ 9(z) dv = | .duf Py dv,

for a continuous function .

Le apr 1 :
lim= [ A" @) dv=lim— [Lduf A @) dv,

n—w 1 n—x 1

n—w 1 n—w f]

tim [ S A G dv=tim [ AP (0) du

[, AGsdv=[ . p)du .



Theorem (Shigenor1 Matsumoto and N-, 2002)

f:T?> = T?% a C” - diffeomorphism isotopic to id
=> there 1s an f - invariant prob. measure u
such that R (f) =0

Key lemma.
f:T?> = T? a C” - diffeomorphism isotopic to id.
= Af(z,v) =0 for some point (z,v) € TT"

isotopy f;




Proof of (Key lemma—Theorem)
There is (z,,v,) s.t. Af"(z,,v,) =0

Thus > A (F'(z,.v,)) =0
1 n-1 ~ .
Y ;Ezeoa(fl(zwvn))

where 0 i1s the Dirac measure at f i(zn,vn)

v : accumulation of v_

Then R, (f) = fAf(z,s) dv
=lim, ., [Af(z,5) dv_

“lim, . [AfGs) L3 8(F (2,0,
=lim, 13" AF(F (2,0 =0




87, " Eyes of typhoons”

/ Infinitesimal twist
Eye

Move

! 1 :
i : ITE-_
4 4 i
Ll | 1
- L
I:-

from [RETHR—LR— ]

When does an Eye of typhoon turn out?
strong twist + slow move

How to describe this situation?



[7]
FortER, f = f,_, °f
f,:R* —=R? ; the lift of f, with respect to f,

For x ER”,

-

(Df,), -(Df,),
ly =X

K, (x) = max x=y,yER } forx ER’

S (x): symmetric part of the polar

decomposition for DE(x)



Theorem.

f:T* —T?* a C” -diffeomorphism isotopic to id
s.t. f has no periodic point and
the Ruelle invariant R (f) >0

N = S +1
R
If||S,(x)—id| <1/2 for any x and 1= n < N,

then there 1s a point x, s.t.

V2

32K (x,)

= d(x, f,(x,))




