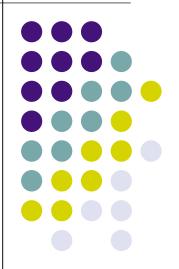
Infinitesimal twists along orbits

Hiromichi Nakayama (Hiroshima University)

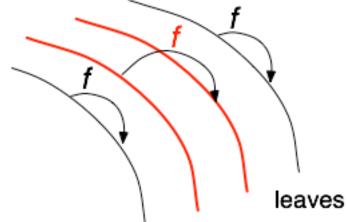


Contents

- I. Invariant foliations
- II. Projectivized bundle
- III. Model case
- IV. Properties of PSL(2,R)
- v. Twist along orbits
- vi. Ruelle invariant
- VII. "Eyes of typhoons"

§1, Invariant foliations

In Le Calvez's talk In this talk f_t isotopy leaves



foliations dynamically transverse to the isotopy

foliations invariant under diffeomorphisms

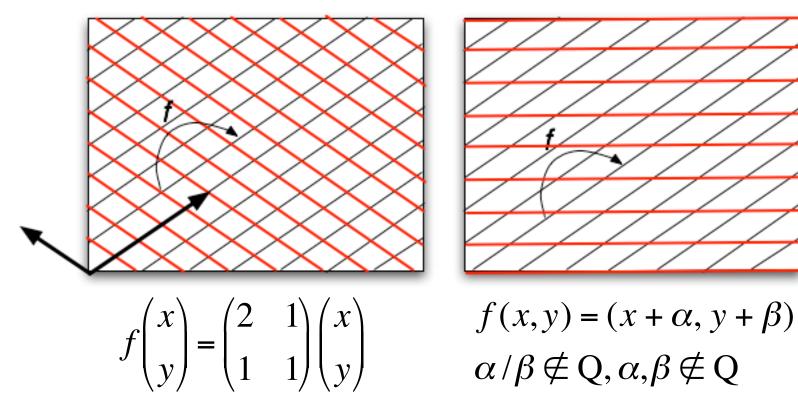
f maps each leaf onto a leaf

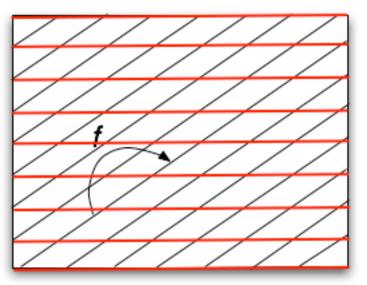
Examples of invariant foliations

 $f: T^2 \rightarrow T^2$; a diffeomorphism

Anosov Diffeom.

Irrational transf.







Assumption

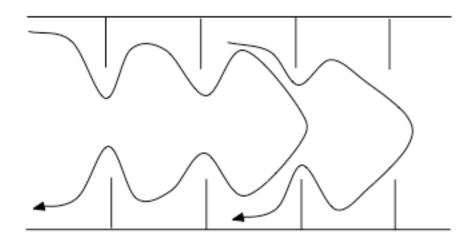
In this talk, we will respect our attention to diffeomorphisms of the torus T^2

Remark (my original interest)

When can a homeomorphism of R² without a fixed point be embedded in a flow? (flowability)

leaf preserving homeoms

 \rightarrow foliation preserving diffeoms



A homeomorphism which can not be the time one map of a flow (by M. Brown)

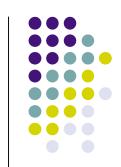
The other examples

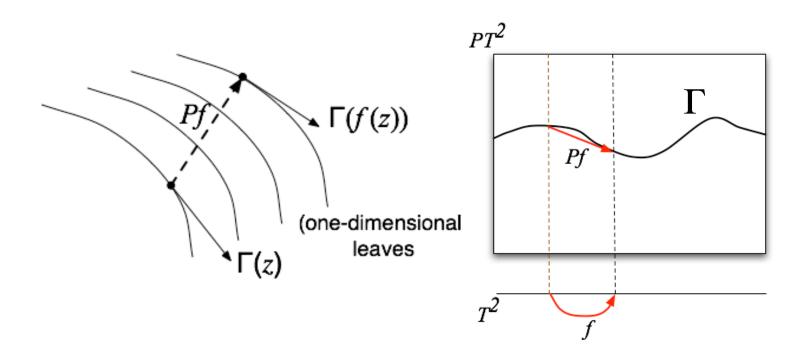
(N-, F. Le Roux)

§ 2, Projectivized bundles

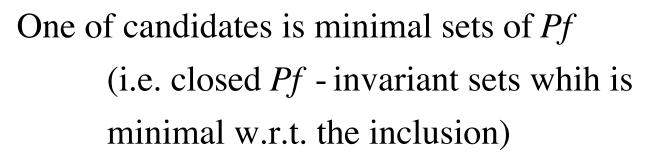
 TT^2 : the tangent bundle of T^2 $PT^{2} = \{(z,v) \in TT^{2}; v \neq 0\} / v \sim kv \quad (k \neq 0)$ projectivized bundle $f: T^2 \rightarrow T^2$: a diffeomorphism $Df:TT^2 \rightarrow TT^2$: the derivative of f $Pf: PT^2 \rightarrow PT^2$: the diffeom induced from *Df* i.e. $(z, [v]) \in PT^2$, Pf(z,[v]) = (z, [Df(v)])

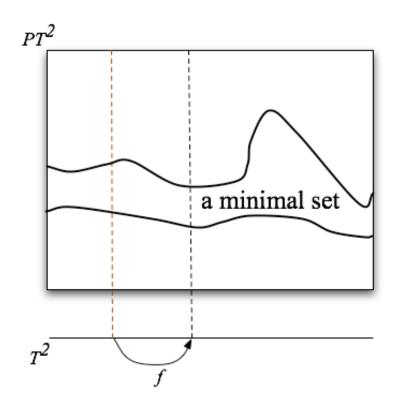
Lemma. *f* is tangent to a C^{∞} foliation \mathfrak{F} \Leftrightarrow There is a C^{∞} section $\Gamma: T^2 \to PT^2$ such that $Pf(\Gamma(z)) = \Gamma(f(z))$

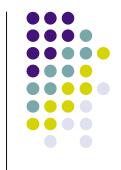




How to find such a section?







§3, Model case

Def. *f* is tangentially distal iff $\inf\{\|Df^n(v)\|; n \in Z\} \neq 0$ for any $v \neq 0$

Theorem. (Shigenori Matsumoto, N-, 1997) If $f: T^2 \rightarrow T^2$ is tangentially distal and minimal (i.e. all orbits dense),

then there is a C^0 1 - dim foliation tangent to f.

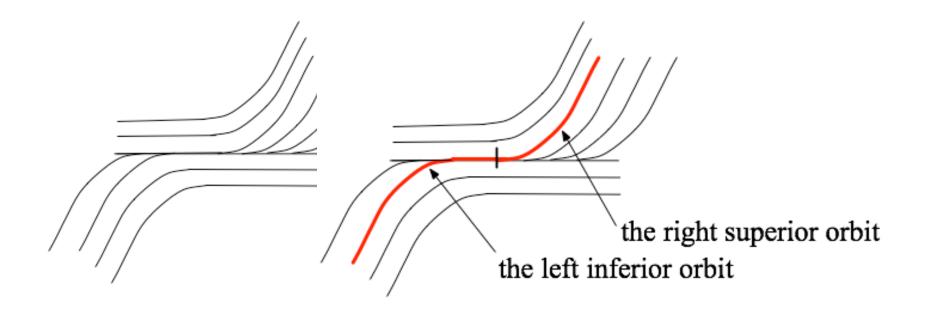
Sketch of proof

1) To find an invariant C^0 section for Pf.

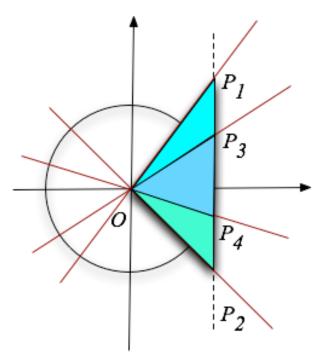
 \rightarrow routine work

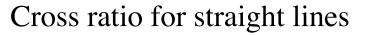
2) To find a tangent C^0 foliation.

(not always uniquely integrable)



§4, Properties of PSL(2,R)





$$(P_1, P_2, P_3, P_4) = \frac{\overline{P_1 P_3}}{\overline{P_3 P_2}} / \frac{\overline{P_1 P_4}}{\overline{P_4 P_2}}$$

The cross ratio is invariant under SL(2,R)because SL(2,R) preserves the area of the triangles

$$\frac{\overline{OP_1P_3}}{\overline{OP_3P_2}} \Big/ \frac{\overline{OP_1P_4}}{\overline{OP_4P_2}}$$

How to use the cross ratio.

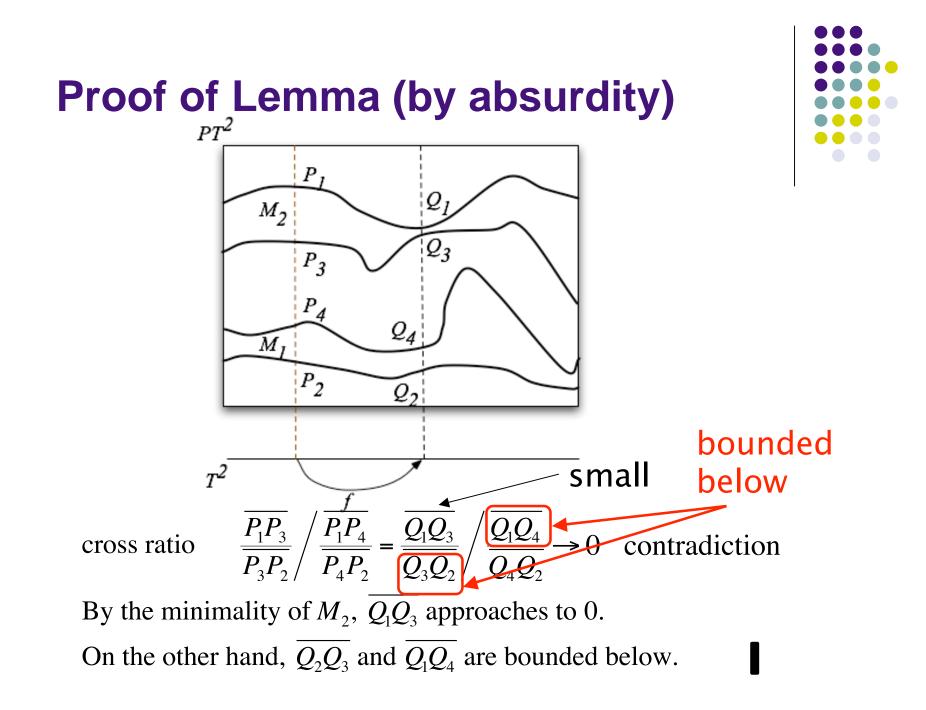
Here we consider the case when

Pf has two minimal sets M_1, M_2 .

i.e. there are closed invariant sets M_i (i = 1,2) in PT^2

which are minimal among such closed invariant sets.

Lemma. For any fiber $\{z\} \times P^1$, either $M_1 \cap (\{z\} \times P^1)$ or $M_2 \cap (\{z\} \times P^1)$ consists of a single point. PT^2 M_2 M_1 M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2 M_2 $M_$

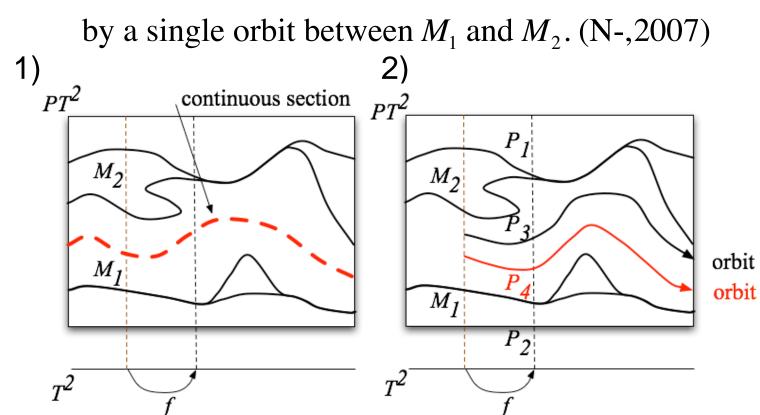


Then we can

1) find a continuous section between M_1 and M_2 .

(N - and Noda, 2005)

2) control all the orbits between M_1 and M_2



§5, Infinitesimal twist along orbits

 $f: T^2 \rightarrow T^2$; a C^2 diffeomorphism isotopic to id f_{t} is its isotopy $(f_{0} = id, f_{1} = f)$ T_1T^2 : the unit tangent bundle of T^2 $\angle f: T_1T^2 \rightarrow T_1T^2$; a diffeomorphism defined by $\angle f(z,v) = \left(f(z), \frac{Df_z(v)}{\left\| Df_{z}(v) \right\|} \right)$ $f(z) \qquad \qquad \angle f(z,v)$ isotopy f_t $\Delta Df_{z}(v)$

§6, Ruelle invariant

 $\tilde{f}: T^2 \times \mathbb{R} \to T^2 \times \mathbb{R}$: the lift of $\angle f$ with respect to the isotopy f_t $\rho(z) = \lim_{n \to \infty} \frac{\tilde{f}^n(z,0)}{n}$ if it exists Def. $\mu: \text{an } f$ - invariant prob. measure of T^2

The Ruelle invariant

$$R_{\mu}(f) \coloneqq \int_{T^2} \rho(z) d\mu$$

"Average of the twist along the orbits"

Another def of Ruelle invariant by Ruelle

 $G = SL(2, \mathbb{R})$

 \tilde{G} : the universal cover of G

Let *A* be an element of \tilde{G} .

i.e. $A(t) \in G, A(0) = e \ (0 \le t \le 1)$

We will define the angle of A

Polar decomposition of A(t)

A(t) = O(t)S(t)

where S(t): (positive) symmetric matrix

O(t): orthogonal matrix

$$(S(t) = \sqrt{T A(t)A(t)}, O(t) = A(t)S_t^{-1})$$

 $\theta(t) \coloneqq (\text{the angle of } O(t)) \in S^{1}$ $O(t) = \begin{pmatrix} \cos \theta(t) & -\sin \theta(t) \\ \sin \theta(t) & \cos \theta(t) \end{pmatrix}$

 $\Theta(A) \in \mathbb{R}$; the variation of $\theta(t)$

For $n \in \mathbb{Z}_+$ $A(z,n) \coloneqq \left(t \mapsto \frac{Df_{nt}(z)}{\sqrt{\det Df_{nt}(z)}} \right) \in \tilde{G} \quad (0 \le t \le 1)$

Lemma.
$$\rho(z) = \lim_{n \to \infty} \frac{\Theta(A(z, n))}{n}$$

The Ruelle invariant
$$R_{\mu}(f) = \int_{T^2} \lim_{n \to \infty} \frac{\Theta(A(z,n))}{n} d\mu$$

Remark. The Ruelle invariant can be defined for symplectic matrices (by Ruelle).

Another def of Ruelle invariant

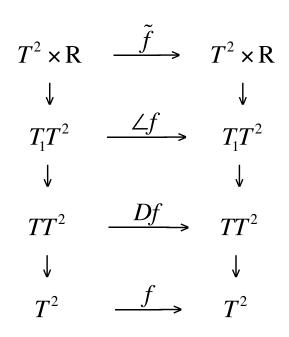
$$\mu: \text{ an } f \text{ - invariant measure of } T^2$$

$$\pi: T_1T^2 \to T^2; \text{ the projection}$$
Then there is a measure $v \text{ on } T_1T^2$
s.t. $(\angle f)_*v = v \text{ and } \pi_*v = \mu$

$$\Delta: T_1T^2 \to \mathbb{R} \text{ defined by}$$

$$\tilde{f}(z,v) = (f(z), v + \Delta f(z,v))$$
for $(z,v) \in T^2 \times \mathbb{R}$

Theorem (T. Inaba and N-, 2004) $R_{\mu}(f) = \int_{T_1T^2} \Delta f \, d\nu$ by Inaba, N-



Outline of proof

By the disintegration theorem,

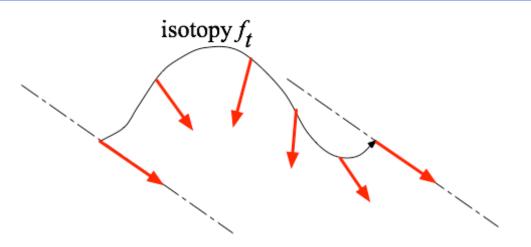
there is a prob. measure v_z on each fiber $\{z\} \times S^1$ s.t. $\int_{T_1T^2} \varphi(z,v) dv = \int_{T^2} d\mu \int_{\{z\} \times S^1} \varphi(z,v) dv_z$ for a continuous function φ . $\therefore \lim \frac{1}{2} \int_{-\infty}^{\infty} \Delta f^n(z,v) dv = \lim \frac{1}{2} \int_{-\infty}^{\infty} d\mu \int_{-\infty}^{\infty} \Delta f^n(z,v) dv_z$

$$\therefore \lim_{n \to \infty} n \int_{T_1 T^2} \sum_{i=0}^{n-1} \Delta f(\tilde{f}^i(z, v)) \, dv = \lim_{n \to \infty} \frac{1}{n} \int_{T^2} \Delta f^n(z, 0) \, d\mu$$
$$\int_{T_1 T^2} \Delta f(z, s) \, dv = \int_{T^2} \rho(z) \, d\mu$$

Theorem (Shigenori Matsumoto and N-, 2002) $f: T^2 \rightarrow T^2$; a C^{∞} - diffeomorphism isotopic to id \Rightarrow there is an f - invariant prob. measure μ such that $R_{\mu}(f) = 0$

Key lemma.

 $f: T^2 \to T^2$; a C^{∞} - diffeomorphism isotopic to id. $\Rightarrow \Delta f(z,v) = 0$ for some point $(z,v) \in T_1 T^2$



Proof of (Key lemma→Theorem)

There is (z_n, v_n) s.t. $\Delta f^n(z_n, v_n) = 0$ Thus $\sum_{n=1}^{n-1} \Delta f(\tilde{f}^i(z, v_n)) = 0$

Thus
$$\sum_{i=0} \Delta f(f(z_n, v_n)) =$$

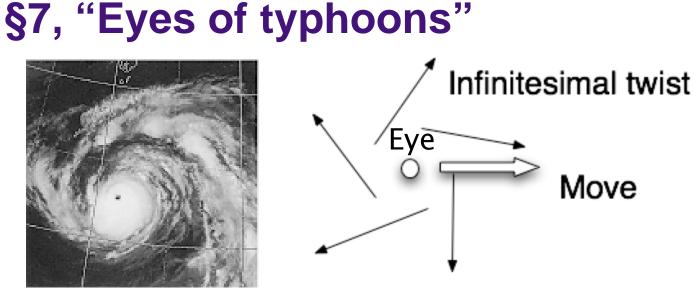
 $v_n \coloneqq \frac{1}{n} \sum_{i=0}^{n-1} \delta(\tilde{f}^i(z_n, v_n))$

where δ is the Dirac measure at $\tilde{f}^{i}(z_{n}, v_{n})$

$$v$$
: accumulation of v_n

Then
$$R_{\mu}(f) = \int \Delta f(z,s) dv$$

 $= \lim_{n \to \infty} \int \Delta f(z,s) dv_n$
 $= \lim_{n \to \infty} \int \Delta f(z,s) \frac{1}{n} \sum_{i=0}^{n-1} \delta(\tilde{f}^i(z_n,v_n))$
 $= \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \Delta f(\tilde{f}^i(z_n,v_n)) = 0$



from「気象庁ホームページ」

When does an Eye of typhoon turn out? strong twist + slow move How to describe this situation?

For
$$t \in \mathbb{R}$$
, $f_t = f_{t-[t]} \circ f^{[t]}$
 $\overline{f_t} : \mathbb{R}^2 \to \mathbb{R}^2$; the lift of f_t with respect to f_t

For $x \in \mathbb{R}^2$, $\left\{ \| (\overline{D} \overline{C}) - (\overline{D} \overline{C}) \| \right\}$

$$K_n(x) = \max\left\{\frac{\left\| (D\overline{f_n})_y - (D\overline{f_n})_x \right\|}{\left\| y - x \right\|}; x \neq y, y \in \mathbb{R}^2\right\} \text{ for } x \in \mathbb{R}^2$$

 $S_n(x)$: symmetric part of the polar decomposition for $D\overline{f_n}(x)$

Theorem.

 $f: T^2 \rightarrow T^2$; a C^{∞} - diffeomorphism isotopic to id s.t. f has no periodic point and the Ruelle invariant $R_u(f) > 0$ $N \coloneqq \left| \frac{3\pi}{R_{\mu}(f)} \right| + 1$ If $||S_n(x) - \operatorname{id}|| < 1/2$ for any x and $1 \le n \le N$, then there is a point x_0 s.t. $\frac{\sqrt{2}}{32K_n(x_0)} \le d(x_0, f_n(x_0))$

