Tetsu MASUDA
Department of Mathematical Sciences, College of Science and Engineering
Aoyama Gakuin University, 
5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa, 252-5258 Japan
* Switch to Japanese
Publications
   - On additional symmetry and bilinearization of the q-Painlevé systems associated with the affine Weyl group of type A
 T. Masuda
 Letters in Mathematical Physics 114 (1) (2024)
 
 
- Cluster algebras and higher order generalizations of the q-Painlevé equations of type A7(1) and A6(1)
 T. Masuda, N. Okubo and T. Tsuda
 RIMS Kokyuroku Bessatsu B87 (2021) 149-163.
 
 
- Discrete power functions on a hexagonal lattice I: Derivation of defining equations from the symmetry of the Garnier system in two variables
 N. Joshi, K. Kajiwara, T. Masuda, N. Nakazono
 J. Phys. A 54 (2021) 335202
 
 
- Bilinearization of the q-Sasano system of type D7(1) and special polynomials associated with its rational solutions
 T. Masuda
 RIMS Kokyuroku Bessatsu B78 (2020) 1-27.
 
 
- Geometric description of a discrete power function associated with the sixth Painlevé equation
 N. Joshi, K. Kajiwara, T. Masuda, N. Nakazono, Y. Shi
 Proc. Roy. Soc. London Ser. A. 473 2017.0312.
 
 
- A q-deformation of discrete dynamical systems associated with the Weyl group of type A
 A. Ikeda and T. Masuda
 Journal of Integrable Systems 1 (2016) 1-14.
 
 
- A q-analogue of the higher order Painlevé type equations with the affine Weyl group symmetry of type D
 T. Masuda
 Funkcial. Ekvac. 58 (2015) 405-430.
 
 
- An explicit formula for the discrete power function associated with circle patterns of Schramm type
 H. Ando, M. Hay, K. Kajiwara and T. Masuda
 Funkcial. Ekvac. 57 (2014) 1-41: 
       arXiv:1105.1612v2.
 
 
- Bilinearization and special solutions to the discrete Schwarzian KdV equation
 M. Hay, K. Kajiwara and T. Masuda
 J. Math-for-Ind. 3 (2011) 53-62.:
       arXiv:1102.1829
 
 
- Hypergeometric τ-functions of the q-Painlevé system of type E8(1)
 T. Masuda
 Ramanujan J. 24 (2011) 1-31.
 
 
- Hypergeometric τ-functions of the q-Painlevé system of type E7(1)
 T. Masuda
 SIGMA 5 (2009), Paper 035, 30 pp.: 
       arXiv:0903.4102v1
 
 
- The anti-self-dual Yang-Mills equation and the Painlevé III equation
 T. Masuda
 J. Phys. A 40 (2007) 14433-14445.
 
 
- Point configurations, Cremona transformations and the elliptic difference Painlevé equation
 K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
 Seminaires et Congres 14 (2006) 169-198: 
       nlin.SI/0411003.
 
 
- q-Painlevé VI equation arising from q-UC hierarchy
 T. Tsuda and T. Masuda
 Comm. Math. Phys. 262 (2006) 595-609.
 
 
- Special polynomials associated with the Noumi-Yamada system of type A5(1)
 T. Masuda
 Funkcial. Ekvac. 48 (2005) 231-246.
 
 
- The anti-self-dual Yang-Mills equation and classical transcendental solutions to the Painlevé II and IV equations
 T. Masuda
 J. Phys. A 38 (2005) 6741-6757.
 
 
- Construction of hypergeometric solutions to the q-Painlevé equations
 K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
 Internat. Math. Res. Notices 24 (2005) 1439-1463: 
       nlin.SI/0501051.
 
 
- Cubic pencils and Painlevé Hamiltonians
 K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
 Funkcial. Ekvac. 48 (2005) 147-160: 
       nlin.SI/0403009.
 
 
- Classical transcendental solutions of the Painlevé equations and their degeneration
 T. Masuda
 Tohoku Math. J. 56 (2004) 467-490: 
       nlin.SI/0302026.
 
 
- Hypergeometric solutions to the q-Painlevé equations
 K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
 Internat. Math. Res. Notices 47 (2004) 2497-2521: 
       nlin.SI/0403036.
 
 
- 10E9 solutions to the elliptic Painlevé equation
 K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
 J. Phys. A 36 (2003) L263-L272: 
       nlin.SI/0303032.
 
 
- On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade
 T. Masuda
 Funkcial. Ekvac. 46 (2003) 121-171: 
       nlin.SI/0202044.
 
 
- On the rational solutions of q-Painlevé V equation
 T. Masuda
 Nagoya Math. J. 169 (2003) 119-143: 
       nlin.SI/0107050.
 
 
- A determinant formula for a class of rational solutions of Painlevé V equation
 T. Masuda, Y. Ohta and K. Kajiwara
 Nagoya Math. J. 168 (2002) 1-25: 
       nlin.SI/0101056.
 
 
- Determinant formulas for the Toda and discrete Toda equations
 K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
 Funkcial. Ekvac. 44 (2001) 291-307: 
       solv-int/9908007.
 
 
- On the Umemura polynomials for the Painlevé III equation
 K. Kajiwara and T. Masuda
 Phys. Lett. A 260 (1999) 462-467: 
       
        solv-int/9903015.
 
 
- A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations
 K. Kajiwara and T. Masuda
 J. Phys. A 32 (1999) 3763-3778: 
       
        solv-int/9903014.
 
 
- Extraction of stationary axisymmetric asymptotically flat space-time
 T. Masuda
 J. Phys. Soc. Japan 68 (1999) 43-45.
 
 
- Neugebauer-Kramer solutions of the Ernst equation in Hirota's direct method
 T. Masuda, N. Sasa and T. Fukuyama
 J. Phys. A 31 (1998) 5717-5731.
 
 
- Limit manipulation between the cylindrical Toda equation and the cylindrical KdV equation
 T. Masuda
 J. Phys. Soc. Japan 64 (1995) 3573-3574.
 
 
Translation
   - Symmetries in Painlevé equations
 M. Noumi and Y. Yamada
 Sugaku Expositions 17 (2004) 203-218.
 originally appeared in Japanese in Sugaku 53 (2001) 62-75.