Restriction of the irreducible representations of $G L_{n}$ to the symmetric group \mathfrak{S}_{n}.

Kyo Nishiyama

Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University, Kyoto 606-8501, JAPAN
e-mail: kyo@math.h.kyoto-u.ac.jp

1 Problem

Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ be a dominant integral weight of $G L_{n}$ and consider the finite dimensional irreducible representation ρ_{λ} with the highest weight λ. The permutation matrices in $G L_{n}$ form a finite subgroup which is isomorphic to the symmetric group \mathfrak{S}_{n}. We identify \mathfrak{S}_{n} with this subgroup. Then our problem can be stated as follows.

Problem 1.1 Describe the decomposition of $\left.\rho_{\lambda}\right|_{\mathfrak{S}_{n}}$ when restricted to the subgroup \mathfrak{S}_{n}.
We will reduce this problem to the decomposition of plethysms in principle.

2 Main result

Let us review $G L_{n} \times G L_{m}$-duality on the symmetric algebra $S\left(\mathbb{C}^{n} \otimes \mathbb{C}^{m}\right)$. It is well-known that $S\left(\mathbb{C}^{n} \otimes \mathbb{C}^{m}\right)$ is multiplicity free as a representation of $G L_{n} \times G L_{m}$ and decomposes as follows (see, e.g. [Howe]):

$$
S\left(\mathbb{C}^{n} \otimes \mathbb{C}^{m}\right) \simeq \sum_{\operatorname{length}(\lambda) \leq \min \{m, n\}} \rho_{\lambda}^{(n)} \otimes \rho_{\lambda}^{(m)}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right)$ is a weight (or a partition) and $\rho_{\lambda}^{(n)}$ is the irreducible representation of $G L_{n}$ with highest weight λ. Put $V=\mathbb{C}^{m}$ and assume $m \geq n$. Then we can reformulate the left hand side of the above formula:

$$
\begin{aligned}
S\left(\mathbb{C}^{n} \otimes V\right) & \simeq \otimes^{n} S(V) \\
& =\otimes^{n}\left(\bigoplus_{k=0}^{\infty} S_{k}(V)\right) \\
& =\bigoplus_{\nu=\left(\nu_{1}, \cdots, \nu_{n}\right) \in \mathbb{Z} \geq 0} S_{\nu_{1}}(V) \otimes \cdots \otimes S_{\nu_{n}}(V),
\end{aligned}
$$

where $S_{k}(V)$ denotes a homogeneous component of degree k in $S(V)$. For $\nu=$ $\left(\nu_{1}, \cdots, \nu_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$, put

$$
\mathfrak{S}_{\nu}=\mathfrak{S}_{\nu_{1}} \times \cdots \times \mathfrak{S}_{\nu_{n}} \subset \mathfrak{S}_{|\nu|} \quad\left(|\nu|=\nu_{1}+\cdots+\nu_{n}\right)
$$

Then we have

$$
\begin{equation*}
S_{\nu_{1}}(V) \otimes \cdots \otimes S_{\nu_{n}}(V)=\left(\otimes^{|\nu|} V\right)^{\mathfrak{S}_{\nu}} \tag{2.1}
\end{equation*}
$$

By the classical Schur duality (cf. [Weyl]), we know the decomposition

$$
\otimes^{|\nu|} V \simeq \sum_{|\lambda|=|\nu|, \text { length }(\lambda) \leq n} \rho_{\lambda}^{(m)} \otimes \sigma_{\lambda}
$$

as a $G L_{m} \times \mathfrak{S}_{|\nu|}$-module. Therefore the above formula (2.1) becomes

$$
\left(\sum_{|\lambda|=|\nu|, \operatorname{length}(\lambda) \leq n} \rho_{\lambda}^{(m)} \otimes \sigma_{\lambda}\right)^{\mathfrak{G}_{\nu}}=\sum_{|\lambda|=|\nu|, \operatorname{length}(\lambda) \leq n} \rho_{\lambda}^{(m)} \otimes\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\nu}}
$$

We summarize as

$$
\begin{aligned}
\otimes^{m} S(V) & \simeq \sum_{\nu \in \mathbb{Z}_{\geq 0}^{n}|\lambda|=|\nu|, \text { length }(\lambda) \leq n} \rho_{\lambda}^{(m)} \otimes\left(\sigma_{\lambda}\right)^{\mathfrak{G}_{\nu}} \\
& \simeq \sum_{\operatorname{length}(\lambda) \leq n} \rho_{\lambda}^{(m)} \otimes\left(\sum_{\nu \in \mathbb{Z}_{\geq 0}^{n},|\nu|=|\lambda|}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\nu}}\right) .
\end{aligned}
$$

Here, $\sum\left(\sigma_{\lambda}\right)^{\mathfrak{G}_{\nu}}$ becomes an \mathfrak{S}_{n}-module, whose module structure is induced by the original action of $G L_{n}$. So we obtain

$$
\begin{aligned}
\left.\rho_{\lambda}^{(n)}\right|_{\mathfrak{S}_{n}} & \simeq \sum_{\nu \in \mathbb{Z}_{\geq 0}^{n},|\nu|=|\lambda|}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\nu}} \\
& \simeq \sum_{\mu \vdash|\lambda|, \text { length }(\mu) \leq n}\left(\sum_{\nu \in \mathfrak{S}_{n} \cdot \mu}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\nu}}\right) .
\end{aligned}
$$

Let \mathcal{V}_{λ} be a representation space on which $G L_{n}$ acts via $\rho_{\lambda}^{(n)}$ and $\mathcal{V}_{\lambda}(\mu)$ its weight space of weight μ. We put $\mathcal{V}_{\lambda}\left(\mathfrak{S}_{n} \cdot \mu\right)=\sum_{\nu \in \mathfrak{S}_{n} \cdot \mu} \mathcal{V}_{\lambda}(\nu)$. Then, clearly $\mathcal{V}_{\lambda}\left(\mathfrak{S}_{n} \cdot \mu\right)$ is invariant under \mathfrak{S}_{n} and we get the following lemma.

Lemma 2.1 As a representation of \mathfrak{S}_{n}, there is an isomorphism:

$$
\mathcal{V}_{\lambda}\left(\mathfrak{S}_{n} \cdot \mu\right) \simeq \sum_{\nu \in \mathfrak{S}_{n} \cdot \mu}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\nu}}
$$

Take a partition $\mu \vdash|\lambda|$. Consider the normalizer $\mathfrak{N}_{\mu}=N_{\mathfrak{S}_{|\mu|}}\left(\mathfrak{S}_{\mu}\right)$ of \mathfrak{S}_{μ} in $\mathfrak{S}_{|\mu|}$;

$$
\mathfrak{N}_{\mu}=\left\{s \in \mathfrak{S}_{|\mu|} \mid s \mathfrak{S}_{\mu} s^{-1}=\mathfrak{S}_{\mu}\right\}
$$

Then there exists a partition $\alpha(\mu)=\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right)$ of length $(\mu) \leq n$ such that

$$
\mathfrak{N}_{\mu} / \mathfrak{S}_{\mu} \simeq \mathfrak{S}_{\alpha}=\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{k}}
$$

Since \mathfrak{N}_{μ} normalizes \mathfrak{S}_{μ}, it acts on $\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}$. Moreover, by definition, \mathfrak{S}_{μ} acts on $\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}$ trivially. So we get a representation of $\mathfrak{S}_{\alpha} \simeq \mathfrak{N}_{\mu} / \mathfrak{S}_{\mu}$ on $\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}$.

Proposition 2.2 With the notations above, we have

$$
\sum_{\mu \in \mathfrak{S}_{n} \cdot \mu}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}} \simeq \operatorname{Ind}_{\mathfrak{S}_{\alpha} \times \mathfrak{S}_{n-|\alpha|}}^{\mathfrak{S}_{n}}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}} \otimes 1,
$$

where 1 means the trivial representation of $\mathfrak{S}_{n-|\alpha|}$.
Proof.
Now we summarize the above results into

Theorem 2.3

$$
\left.\rho_{\lambda}^{(n)}\right|_{\mathfrak{S}_{n}} \simeq \bigoplus_{\mu \vdash|\lambda|} \operatorname{Ind}_{\mathfrak{S}_{\alpha} \times \mathfrak{S}_{n-|\alpha|}}^{\mathfrak{S}_{n}}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}} \otimes 1,
$$

where $\alpha \vdash \operatorname{length}(\mu)$ is determined by μ via

$$
N_{\mathfrak{S}_{|\lambda|}}\left(\mathfrak{S}_{\mu}\right) / \mathfrak{S}_{\mu} \simeq \mathfrak{S}_{\alpha}
$$

Remark. Put $k=|\lambda|=|\mu|$. By the Frobenius reciprocity, we have

$$
\begin{aligned}
\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}} & \simeq \operatorname{Hom}_{\mathfrak{S}_{\mu}}\left(\mathbb{C}, \sigma_{\lambda}\right) \simeq \operatorname{Hom}_{\mathfrak{S}_{k}}\left(\operatorname{Ind}_{\mathfrak{S}_{\mu}}^{\mathfrak{S}_{k}} \mathbb{C}, \sigma_{\lambda}\right) \\
& \Longrightarrow \operatorname{dim}\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}=\left[\sigma_{\lambda}: \operatorname{Ind}_{\mathfrak{S}_{\mu}}^{\mathfrak{S}_{k}} \mathbb{C}\right]
\end{aligned}
$$

This number is called the Kostka number (cf. [Macdonald]). By Lemma 2.1, it is equal to the weight multiplicity of μ in the representation $\left(\rho_{\lambda}^{(n)}, \mathcal{V}_{\lambda}\right)$ of $G L_{n}$.

3 Relation to the plethysm

It seems difficult to determine the action of \mathfrak{S}_{α} on $\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}$. The reason why it is difficult is as follows. Put $k=|\lambda|$ (i.e., $\lambda \vdash k$). Note that the normalizer of $\mathfrak{S}_{\mu}=\mathfrak{S}_{\mu_{1}} \times \cdots \times \mathfrak{S}_{\mu_{n}}$ in \mathfrak{S}_{k} is a wreath product

$$
\mathfrak{S}_{\alpha} \ltimes \mathfrak{S}_{\mu} \subset \mathfrak{S}_{k}, \mathfrak{S}_{\alpha}=\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{m}}
$$

for some $\alpha \vdash n$. The irreducible representations of a wreath product are well-studied and completely classified (see [JK, Theorem 4.3.34]).

In our case, for $\pi \in \mathfrak{S}_{\alpha}^{\wedge}$, let $(\pi: 1)$ be an irreducible representation of $\mathfrak{S}_{\alpha} \ltimes \mathfrak{S}_{\mu}$ which is obtained by the successive application of the natural projection of $\mathfrak{S}_{\alpha} \ltimes \mathfrak{S}_{\mu} \rightarrow \mathfrak{S}_{\alpha}$ and the representation π of \mathfrak{S}_{α}. Then we get

$$
\begin{aligned}
\operatorname{Hom}_{\mathfrak{S}_{\alpha}}\left(\pi,\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}\right) & =\operatorname{Hom}_{\mathfrak{S}_{\alpha}}\left((\pi: 1)^{\mathfrak{S}_{\mu}},\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}\right) \\
& =\operatorname{Hom}_{\mathfrak{S}_{\alpha} \ltimes \mathfrak{S}_{\mu}}\left((\pi: 1), \sigma_{\lambda}\right) \\
& \simeq \operatorname{Hom}_{\mathfrak{S}_{k}}\left(\operatorname{Ind}_{\mathfrak{S}_{\alpha} \ltimes \mathfrak{S}_{\mu}}^{\mathfrak{S}_{k}}(\pi: 1), \sigma_{\lambda}\right) .
\end{aligned}
$$

If we know $\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}$ completely as an \mathfrak{S}_{α}-module, then we know $\operatorname{Hom}_{\mathfrak{S}_{\alpha}}\left(\pi,\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}\right)$, hence the multiplicity of σ_{λ} in $\operatorname{Ind}_{\mathfrak{S}_{\alpha} \times \mathfrak{S}_{\mu}}^{\mathfrak{S}_{k}}(\pi: 1)$ can be determined. However, the induced representation

$$
\operatorname{Ind}_{\mathfrak{S}_{\alpha} \ltimes \mathfrak{S}_{\mu}}^{\mathfrak{S}_{k}}(\pi: 1)
$$

is a special case of plethysms and its decomposition is not completely known yet (cf. [JK, §5.4]).

Using the above relation, we can rephrase our theorem in terms of the decomposition of plethysm:

$$
\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}} \simeq \bigoplus_{\pi \in \mathfrak{S}_{\hat{\alpha}}}\left[\sigma_{\lambda}: \operatorname{Ind}_{\mathfrak{S}_{\alpha} \ltimes \mathfrak{S}_{\mu}}^{\mathfrak{S}_{k}}(\pi: 1)\right] \pi
$$

Theorem 3.1

$$
\left.\rho_{\lambda}^{(n)}\right|_{\mathfrak{S}_{n}} \simeq \bigoplus_{\mu \vdash|\lambda|} \bigoplus_{\pi \in \mathfrak{S}_{\hat{\alpha}}}\left[\sigma_{\lambda}: \operatorname{Ind}_{\mathfrak{S}_{\alpha} \times \mathfrak{S}_{\mu}}^{\mathfrak{S}_{k}}(\pi: 1)\right] \operatorname{Ind}_{\mathfrak{S}_{\alpha} \times \mathfrak{S}_{n-|\alpha|}}^{\mathfrak{S}_{n}} \pi \otimes 1
$$

Example 3.2 Take $\lambda=\left(k^{n}\right)=(k, \cdots, k)$. In this case, we have $\rho_{\lambda}^{(n)}=\left(\operatorname{det}^{(n)}\right)^{k}$. So, we know $\left.\rho_{\lambda}^{(n)}\right|_{\mathfrak{S}_{n}}=(\operatorname{sgn})^{k}$. Moreover, by Lemma 2.1, we get

$$
\left(\sigma_{\lambda}\right)^{\mathfrak{S}_{\mu}}= \begin{cases}\mathbb{C} & \text { if } \mu=\lambda \\ 0 & \text { otherwise }\end{cases}
$$

For $\mu=\lambda$, the normalizer of $\mathfrak{S}_{\lambda}=\mathfrak{S}_{k} \times \cdots \times \mathfrak{S}_{k}$ in $\mathfrak{S}_{n k}$ is isomorphic to $\mathfrak{S}_{n} \ltimes\left(\mathfrak{S}_{k}\right)^{n}$. So we have

$$
\left[\sigma_{\left(k^{n}\right)}, \operatorname{Ind}_{\mathfrak{S}_{n} \ltimes\left(\mathfrak{S}_{k}\right)^{n}}^{\mathfrak{S}_{n n}}(\pi: 1)\right]= \begin{cases}1 & \text { if } \pi=(\operatorname{sgn})^{k} \\ 0 & \text { if } \pi \neq(\operatorname{sgn})^{k} .\end{cases}
$$

Example 3.3 $|\lambda|=n$ and $\mu=(1, \cdots, 1)=\left(1^{n}\right)$. Then $\alpha(\mu)=(n)$ and $\mathcal{V}(\mu) \simeq \sigma_{\lambda}$. This is a well-known result (cf. [Kostant]).

Example $3.4|\lambda|=k n$ and $\mu=(k, \cdots, k)=\left(k^{n}\right)$. Then $\alpha(\mu)=(n)$ and

$$
\mathcal{V}(\mu) \simeq \bigoplus_{\pi \in \widehat{\mathfrak{S}}_{n}}\left[\sigma_{\lambda}: \operatorname{Ind}_{\mathfrak{S}_{n} \ltimes\left(\mathfrak{S}_{k}\right)^{n}}^{\mathfrak{S}_{n k}}(\pi: 1)\right] \pi
$$

This is a result of [AMT].

References

[AMT] S. Ariki, J. Matsuzawa and I. Terada, Representations of Weyl groups on zero weight spaces. In "Algebraic and Topological Theories, to the memory of Dr. Takehiko Miyata", Kinokuniya, 1985, pp. 546 - 568.
[Gutkin] E. Gutkin, Representations of the Weyl group in the space of vectors of zero weight. UspehiMat. Nauka, 28(1973), 237 - 238 (in Russian).
[Kostant] B. Kostant, On Macdonald's η-function formula, the Laplacian and generalized exponents. Adv. in Math., 20(????), 257 - 285.
[King] R. C. King, Branching rules for $G L(N) \supset \Sigma_{m}$ and the evaluation of inner plethysms, J. Math. Phys., 15(1974).
[Howe] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In "The Schur lectures (1992)", Israel Mathematical Conference Proceedings, 8(1995), Bar-Ilan Univ., pp. 1 - 182.
[JK] G. James and A. Kerber, The representation theory of the symmetric group. Encyclopedia of Math. and App. 16, Addison-Wesley, 1981.
[Macdonald] I. Macdonald, Symmetric functions and Hall polynomials. Clarendon Press, 1979.
[Weyl] H. Weyl, The Classical Groups. Princeton University Press, Princeton, N.J., 1946.

First Draft: 1996/10/2
Ver $1.0: 1996 / 10 / 17, \quad$ Ver $1.1: 1996 / 11 / 5$, Ver. 1.2 [00/11/28 10:11]
This version is compiled on November 29, 2000.

