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1 Introduction to cells

cells:

8>><
>>:
�primitive ideals of U(g) (g : semisimple Lie algebra)
�representation theory of �nite Chevalley groups (unipotent representations)
�modular representation theory
etc.

Since I am not a specialist of �nite Chevalley groups or modular representation theory, I
will explain properties of cells through primitive ideals of U(g).

Role in the theory of primitive ideals:

g : a semisimple Lie algebra =C
U(g) : the enveloping algebra � Z : center
g � h : CSA, W =W (g; h) : Weyl group

Z
�
!U(h)W : Harish-Chandra isomorphism

For � 2 h�, 9�� : Z �! C : algebra hom.
& % evaluation at �

U(h)W = S(h)W

�� : the central character corresponding to �: Note that �� = �w� (w 2 W ).

L : an irreducible left U(g)-module

AnnL = fX 2 U(g)j Xl = 0 (8l 2 L)g : primitive ideal1

AnnL \ Z = ker�� (9� 2 h�)
def:
()AnnL 2 Prim(�) : primitive ideals with

central character ��

PrimU(g) =
a

�2h�=W

Prim(�)

Example 1.1 Prim(�) 3 Ann(trivial rep.)

1There are several notions of primitivity in U(g) (cf. Dixmier [Dixmier]).

I : maximal I : completely prime
+ +

I : primitive ) I : prime ) I : semi-prime

A 3 1 : ring

(1) I � A : prime ideal ,

�
A=I � 8J1; J2 : ideals 6= 0
) J1 � J2 6= (0)

�
(2) I � A : completely prime , A=I : integral domain

(3) I � A : semi-prime ideal ,

�
A=I � J : nilpotent ideal
) J = (0)

�
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By translation principle, Prim(�) ' Prim(� + �) 8� 2 P+(�)
� = �(g; h) : roots
P+(�) : dominant integral weights

Parametrization of Prim(�)?

w 2 W

Mw = M(w�� �) : Verma module with h.w. w�� �
# : surjection

Lw = L(w�� �) : its irreducible quotient

Theorem 1.2 (Duo, 1977 [Duo]) ' :W 3 w 7! AnnLw 2 Prim(�) is surjective.

Actually Duo proved more. He proved the theorem for general central character ��'s,
which are possibly singular.

Classi�cation of Prim(�) , determination of �bers of '

,

�
description of equivalence relation on W :

w � w0 def:
()'(w) = '(w0)

This equivalence relation de�nes the left cells in W , i.e., � = �(w) = fw0j '(w) = '(w0)g
is a left cell (Joseph and Vogan, 1980).2

Write �
L
instead of �.

Example 1.3 type An�1. W ' Sn : symmetric group of order n

Sn 3 w 7�! (TL
w ; T

R
w ) : pair of standard tableaux of the same shape

Robinson-Schensted

w�
L
w0 , TL

w = TL
w0 (Barbasch-Vogan, 1982 [BVI, p.171]).3

h� 3 � 7! rk(U(g)=AnnL(�� �)) =: p(�) rk : Goldie rank4.
P 0(�) : regular integral weights, P (�)++ = f� 2 P 0(�)j � : dominantg

Theorem 1.4 (Joseph, 1980 [JI, Cor. 5.12]) For w 2 W , p(w�) is a polynomial on
P (�)++. Denote this polynomial by pw(�) : Joseph's Goldie rank polynomial.

Remark. Using the notion of \coherent family", this theorem is more comprehensive.
pw(�) coincides with the character polynomial (up to scalar multiple) of the coherent
family containing Lw. (Joseph, 1980 [JII, Theorem 5.1]. Cf. King, 1981 [King].)

2This is the de�nition of left cell � here, but historically, the left cells are de�ned by Lusztig by
using purely algebraic structures of Coxeter groups. The equivalence of two de�nitions are established
by Joseph and Vogan. See Theorem 1.6.

3If �
R
is similarly de�ned by using the right annihilators, then w�

R
w0 , TR

w = TR
w0 .

For two-sided cells, w�
LR
w0 , TL

w and TL
w0 have the same shape , TR

w and TR
w0 have the same shape .

4A : a prime ring (i.e., (0) is a primitive ideal , 9 faithful irreducible representation)
Then Fract(A) 'Mat(n� n;D) for some division ring D. De�ne rkA := n.
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pw(�) : a harmonic polynomial on h�, generates an irreducible W -module.

� : left cell 3 w;w0 ) pw(�) = pw0(�) (by de�nition they take the same value on � +
they are proportional. See [JI, Cor.5.12])
=) Write p�(�) = pw(�) (w 2 �).

8� 2 W_

C� :=
a
f�jCWp� ' �g � W

C = C� : two-sided cell in W (if C� 6= ;5)
equivalence relation w�

LR
w0 (, w;w0 2 9C)

� 2 W_ : special representation6
def:
, C� 6= ;

dim� = #f�j� � C� : left cell g ) #Prim(�) =
X

�2W_ : special

dim�

Example 1.5 type An�1. 8� 2 S_
n : special $ Y� : Young diagram

C� = fw$ (TL
w ; T

R
w )j T

L
w has the shape Y�g

[

� = f(TL
w ; T

R
w )g : for the �xed standard tableau TL

w

=) #f�j � � C�g = #f standard tableau of the shape Y�g = dim�

#Prim(�) =
X
�2S_

n

dim� = #f involutions in Sng

#f� � Cg = #f involutions 2 Cg ([Duo, Proposition 9], cf. [Borho, x5.9])

Remark. The above left (or two-sided) cells can be de�ned by using only combinatoric
properties of a Coxeter system (by Kazhdan-Lusztig [KL]). So they are de�ned for general
Coxeter groups, not only for Weyl groups. See [BVII, Remark after Cor.2.16].

CharLw =
X
w02W

aw;w0 CharMw0 (aw;w0 2 Z)

aw;w0 is explicitly determined (Kazhdan-Lusztig conjecture). But we do not need the
explicit information.

a(w) :=
X
w02W

aw;w0w0 2 CW

D(w) := fw0j a(w0) 2 [CWa(w)]g = fw0j AnnLw0 � AnnLwg

The second equality is due to Vogan [Vogan].
5This is not empty i� � is a special representation. See below.
6Special representations are originally introduced by Lusztig ([LI, LII]). However, two di�erent notions

coincide ([BVII, Theorem 2.29]).
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Here, [S] means a-basal subspace7 in CW spanned by S.

Theorem 1.6 (Joseph [Joseph], Vogan [Vogan])

w0�
L
w () [CWa(w0)] = [CWa(w)]

For � : a left cell (w 2 �), we put8

�� :=
X

w02D(w)

[CWa(w0)]

, X
w002D(w);w00 62�

[CWa(w00)] :
left cell representation, not
irreducible in general

Similarly put

C(w) = fw0j a(w0) 2 [CWa(w)W ]g

Theorem 1.7 ([BVII, Cor.2.16])

w�
LR
w0 () [CWa(w0)W ] = [CWa(w)W ]

For C : a two-sided cell (w 2 C), we put9

�C :=
X

w02C(w)

[CWa(w0)W ]

, X
w002C(w);w00 62C

[CWa(w00)W ] : two-sided cell representation

As a W �W -module,

�C =
X�

�

� 
 � (multiplicity free)

FC := f� 2 W_j [�C : � 
 � ] = 1g � W_ : a family associated to C

F = FC is also called two-sided cell10 in W_.

W_ =
a

C : two-sided cell

FC

8FC contains exactly one special representation, i.e., fspecial representations 2 W_g gives
a complete system of representatives for families.

7A subspace in CW is called a-basal if it has basis consisting of a(w)'s. See Joseph II 298p. Note that
fa(w)j w 2Wg forms a basis of CW . In the original version of this note, I misunderstood the de�nition
of D(w); Tanisaki kindly pointed it out.

8The �rst summation in the right hand side of the next formula is surplus.
9Here, the summation is also surplus.
10Original de�nition of family is very complicated one ([Orange Book, x4.2]). However it coincides with

the de�nition presented here (Barbasch-Vogan [BVII, Theorem 2.29], cf. [Orange Book, Theorem 5.25]).
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2 Invariant for cells

We want to de�ne an invariant for families fFg.
The present observations are experimental ones11.

Gyoja(1983) [Gyoja] : � 2 Hq(W )_, Hq(W ) : an Iwahori-Hecke algebra12

L(t; �) = L(t; q; �) :=
X
w2W

�(w)tl(w) (l(w) : length function)

L(t; �) :

�
9 functional equation
distribution of zeros and poles13

are similar to zeta functions14(congruence
zeta functions on algebraic varieties).

Iwahori's suggestion
=) Take l0(w) instead of l(w);

l0(w) :=

�
minimal of m, where w = r1r2 � � � rm,
ri : reection (not necessarily simple)

�

(Cf. for type A, #Prim(�) = #finvolutionsg)

Remark. W y V : natural representation, V (w) := fv 2 V j wv = vg (w 2 W ).
Then l0(w) = codim V (w).

Gyoja-N.-Shimura :
� 2 W_, W : not an Iwahori-Hecke algebra, but a �nite Weyl group.

c(�; t) :=
X
w2W

(trace �(w))tl
0(w)

Does c(�; t) classify cells? : (c(�; t) is computable!)
For types Al; Bl(= Cl); G2 : yes! i.e.,

�1�
LR
��2 (� 2 Aut(W;S)) , c(�1; t) = c(�2; t)

(�1 and ��2 belong to the same family)

For Weyl groups of the other types, some deviation occurs.

11M. Sato: Every mathematician should be an experimentalist.
12For a long time, Hq(W ) is simply called Hecke algebra. Recently, it becomes to be called Iwahori-

Hecke algebra. For this, see Introduction of [Orange Book].
14In case of aÆne Weyl groups, poles appear. However, in this note, Weyl groups always remain �nite.
14Functional equation:

L(t; �) = �(Tw0
)tl(w0)L((�qt)�1; b�); w0 : the longest element, b�(Tw) = (�q)l(w) (Tw�1)

�1
:

zeros:

t = �q�i=2m; � : root of unity, i;m 2 Z s.t. 1 � m � l(w0); 0 � i=2m � 1:
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Want to avoid the deviation.

W y V : natural representation, fmig : exponents, H(V ) = �nH
n(V ) : harmonic

polynomials
� 2 W_; � = Char �

~�(q; y)(w) :=
det(1 + ywjV )

det(1� qwjV )
;

~� (�; q; y) := h�; ~�(q; y)iW

=
1

#W

X
w2W

�(w�1)~�(q; y)(w)

=
X
i;j

hSi(V )
 ^j(V ); �iW qiyj

=
dim�Ql

i=1(1� qmi+1)

X
n;m�0

h
� : Hn(V )


^
m(V )

i
qnym;

Proposition 2.1 l := dimV : rank of W

#W

dim�
lim
q!1

~� (�; q;�1 + t(1� q)) = tlc(�; t�1)

=) ~�(�; q; y) re�nes the property of c(�; t).

From now on, W is assumed to be irreducible.

Observation 2.2 ~� (�; q; y) has many factors of the same type (1 + qcy) (c 2 Z).

Example 2.3 (Or a proposition)

#(family) = 1 ) ~�(�; q; y) = f(q)
rankY
i=1

(1 + qciy)

~� (trivial; q; y) =
lY

i=1

1 + yqmi

1� qmi+1

Example 2.4 (See x3) type Al�1 : W ' Sl

~�(��; q; y) = qn(�)
Y
x2�

1 + qc(x)y

1� qh(x)
� : partition and tableau

notations: (cf. Macdonald's book [M])

n(�) =
X

(i� 1)�i; x = (i; j) 2 � 2 Z2; c(x) = j � i; h(x) = hook length
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� :

c(x) : 0 1 2 3 4

�1 0 1 2

�2 �1

�3

; h(x) : 8 6 4 3 1

6 4 2 1

3 1

1

We put �1(�; q; y) =

�(�)Y
i=1

(1+qciy) : the largest factor of ~� (�; q; y) including only the factors

(1 + qcy) (c 2 Z).

Theorem 2.5 If
(1) W is of type Al; Bl(= Cl); G2 or
(2) W is of type Dl; F4; El (l = 6; 7; 8) and #(family) � 3,
then

�1�
LR
��2 (� 2 Aut(W;S)) , �1(�1; q; y) = �1(�2; q; y)

i.e., �1 and ��2 belong to the same family.

Remark. Even for the case #(family) � 5, the above theorem is almost true. We can
attach linear factors like �1(�; q; y) for each � 2 W_, but it is not the largest linear factor
(i.e., we must choose \special" linear factors).

Remark. If #(family) = 3,

~�(�1; q; y) + ~� (�2; q; y) = f(q)
Y
i

(1 + qdiy) (di 2 Z)

for any two representations �1; �2 in the family.
Similar phenomena occur for the case of type Dl (and #(family) � 5).

The set of (computable) integers

(c1; c2; � � � ; c�(�))

determines a family (or two-sided cell) in W_ (for W in the theorem).
If we overcome the deviation explained above (i.e., the case of #(family) � 5), the com-
putable invariants (ci) really classi�es families (or two-sided cells) in W_ (even for non-
irreducible W 's).

Problem 2.6 (1) Find a method to choose special linear factors for exceptions of the
above theorem.
(2) The above consideration is an experimental one. Clarify the meaning of the invariants
(ci) from the view points of the representation theory of Weyl groups or Iwahori-Hecke
algebras, theory of primitive ideals, �nite Chevalley groups, modular representation theory
: : : .
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3 Calculation of ~� for type A

This section is almost borrowed from Macdonald's book: [M].

First, let us introduce some general theory from [M, xI.2 and xI.3]. In the following, t is
an indeterminate and hr; er; pr are coeÆcients;

H(t) =
X
r�0

hrt
r (h0 = 1)

E(t) := 1=H(�t) =
X
r�0

ert
r

P (t) :=
d

dt
logH(t) = H 0(t)=H(t) =

X
r�0

prt
r

For a partition � = (�1; �2; � � � ), put

h� =
Y
i�1

h�ii ; e� =
Y
i�1

e�ii ; p� =
Y
i�1

p�ii :

Theorem 3.1

hr =
X
j�j=r

1

z�
p�; er =

X
j�j=r

"�
z�
p�

Here, we used the following notation;

z� :=
Y
i�1

imimi! (� = (1m1 � 2m2 � 3m3 � � � ) i.e., mi = #fjj �j = ig)

=
#(conjugacy class in Sn corresponding to �)

n!
(n = j�j)

"� := (�1)j�j�l(�)

Theorem 3.2 Put

s� := det(h�i�i+j)1�i;j�n (n � l(�))

=
X
w2Sn

"(w)h�+Æ�wÆ

= det(e�0
i
�i+j)1�i;j�m (m � l(�0))

Now put n := j�j(� l(�)) and take the character �� of Sn corresponding to �. Then we
have

s� =
X
�

1

z�
��(�)p�;

where � runs over all the partitions of n (i.e., conjugacy classes of Sn).
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Example 3.3 ([M, xI.2 and xI.3]) Let fxig be the set of indeterminates.

H(t) :=
nY
i=1

1

1� xit

)

8<
:

hr : complete symmetric function of degree r
er : elementary symmetric function of degree r
pr =

Pn
i=1 x

r
i

s� =
a�+Æ
aÆ

: Schur function

=

P
w2Sn

"(w)w(x�+Æ)P
w2Sn

"(w)w(xÆ)
(Æ = (n� 1; n� 2; � � � ; 0))

Example 3.4 ([M, xI.2 Ex.3 and xI.3 Ex.1]) Let q be an indeterminates.

H(t) :=
n�1Y
i=0

1

1� qit

) hr =
h
n+ r � 1

r

i
; er = qr(r�1)=2

h
n
r

i
; pr =

1� qnr

1� qr

h
n
r

i
:=

Qr
j=1(1� qn�j+1)Qr

i=1(1� qi)
: q-binomial coeÆcient

s� = qn(�)
Y
x2�

1� qn+c(x)

1� qh(x)

8<
:

c(x) : content
h(x) : hook length
n(�) =

P
i�1(i� 1)�i

(See Example 2.4)

Example 3.5 ([M, xI.2 Ex.4 and xI.3 Ex.2]) Let n!1 in Example 3.4.

H(t) :=
Y
i�0

1

1� qit

) hr =
rY

i=1

1

1� qi
; er = qr(r�1)=2hr; pr =

1

1� qr

s� = qn(�)
Y
x2�

1

1� qh(x)
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Example 3.6 ([M, xI.2 Ex.5 and xI.3 Ex.3] and [Andrews, Chap.II])
Let a and b be indeterminates.

H(t) :=
Y
i�0

1� bqit

1� aqit

) hr =
rY

i=1

a� bqi�1

1� qi
; er =

rY
i=1

aqi�1 � b

1� qi
; pr =

ar � br

1� qr

s� = qn(�)
Y
x2�

a� bqc(x)

1� qh(x)

Proof for the last statement on s�:
Substitute t ! t=a and we have s�=a

j�j instead of s�. So we can assume a = 1. Next,
note that the both hand sides of the equation to be proved are polynomials in b. If
b = qn (n = 1; 2; � � � ), it reduces to Example 3.5, hence the equation is valid for in�nitely
many value of b. We are done.

In the above Example 3.6, substitute a = 1 and b = �y.
For � = (1; 2; � � � ; r) 2 Sr : cyclic permutation, we have

det(1� q�jC r ) = 1� qr:

=) pr =
1� (�y)r

1� qr
=

det(1 + y�jC r )

det(1� q�jC r )

=) For w 2 Sn with cyclic type �;

p� =
det(1 + ywjC n)

det(1� qwjC n)
(= ~�(q; y)(w))

s� = qn(�)
Y
x2�

1 + yqc(x)

1� qh(x)
(by Example 3.6)

=
X
�

1

z�
��(�)p� (by Theorem 3.2)

=
1

n!

X
w2Sn

��(w)p�(w) (�(w) : cyclic type of w)

=
1

n!

X
w2Sn

��(w)~�(q; y)(w) (by the above)

= h�; ~�(q; y)iSn
= ~�(�; q; y)
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4 Comments and references

Mathiew :
H := C

lnfzi = zjg
cohomology H i(H) : dimH i(H) = #fw 2 Slj l0(w) = ig
Is there any relation?
(Cf. Brieskorn [Brieskorn] and Orlik [Orlik].)

Schi�mann :
Is there a formula for �(�)?

�1(�; q; y) =

�(�)Y
i=1

(1 + qciy)

partial answer: 8<
:

type Al�1 : �(�) = l
type El & #(family) = 3 : �(�) = l � 2
etc:

Tanisaki :
How about for Hecke algebra Hq(W )?

L0(�; t) :=
X
w2W

�(Tw)t
l0(w)

Oshima :
l0(w) can be expressed as a linear sum of characters. Is there a closed formula indicating
this fact?
partial answer:

c(�; t) :=
X
w2W

�(w)tl
0(w) )

d

dt
c(�; t)

����
t=1

= #W � h�; l0iW

Since l0(w) =
P

�h�; l
0iW�(w), we have

l0(w) =
1

#W

X
�

�
d

dt
c(�; t)

����
t=1

�
�(w) =

d

dt

 
1

#W

X
�

c(�; t)�(w)

!�����
t=1

:
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