Cells in Weyl group

By Kyo NISHIYAMA

Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University, Kyoto 606, JAPAN
kyo@math.h.kyoto-u.ac.jp

Note for a talk at Strasbourg 1995/9/26

Revised for a talk at Tottori
1996/1/8
Revised after it
1996/1/12
Ver. 1.0 [00/11/25 12:04]

1 Introduction to cells

cells: $\left\{\begin{array}{l}* \text { primitive ideals of } U(\mathfrak{g}) \text { (} \mathfrak{g}: \text { semisimple Lie algebra) } \\ \text { *representation theory of finite Chevalley groups (unipotent representations) } \\ * \text { modular representation theory } \\ \text { etc. }\end{array}\right.$
Since I am not a specialist of finite Chevalley groups or modular representation theory, I will explain properties of cells through primitive ideals of $U(\mathfrak{g})$.

Role in the theory of primitive ideals:

\mathfrak{g} : a semisimple Lie algebra $/ \mathbb{C}$
$U(\mathfrak{g})$: the enveloping algebra $\supset \mathfrak{Z}$: center
$\mathfrak{g} \supset \mathfrak{h}:$ CSA, $W=W(\mathfrak{g}, \mathfrak{h}):$ Weyl group

$$
\mathfrak{Z} \xrightarrow{\sim} U(\mathfrak{h})^{W} \quad: \text { Harish-Chandra isomorphism }
$$

For $\lambda \in \mathfrak{h}^{*}, \exists \chi_{\lambda}: \mathfrak{Z} \quad l \begin{array}{ll} \\ & \longrightarrow \\ & \longrightarrow(\mathfrak{h})^{W}=S(\mathfrak{h})^{W}\end{array} \quad \begin{aligned} & \mathbb{C}: \text { algebra hom. } \\ & \text { evaluation at } \lambda\end{aligned}$
χ_{λ} : the central character corresponding to λ : Note that $\chi_{\lambda}=\chi_{w \lambda} \quad(w \in W)$.
L : an irreducible left $U(\mathfrak{g})$-module

$$
\text { Ann } L=\{X \in U(\mathfrak{g}) \mid X l=0(\forall l \in L)\}: \text { primitive ideal }{ }^{1}
$$

Ann $L \cap \mathfrak{Z}=\operatorname{ker} \chi_{\lambda}\left(\exists \lambda \in \mathfrak{h}^{*}\right) \stackrel{\text { def }}{\Longleftrightarrow} \operatorname{Ann} L \in \operatorname{Prim}(\lambda):$ primitive ideals with central character χ_{λ}

$$
\operatorname{Prim} U(\mathfrak{g})=\coprod_{\lambda \in \mathfrak{h}^{*} / W} \operatorname{Prim}(\lambda)
$$

Example 1.1 $\operatorname{Prim}(\rho) \ni \operatorname{Ann}($ trivial rep. $)$

[^0]$A \ni 1: \operatorname{ring}$
(1) $I \subset A:$ prime ideal $\Leftrightarrow\binom{A / I \supset \forall J_{1}, J_{2}:$ ideals $\neq 0}{\Rightarrow J_{1} \cdot J_{2} \neq(0)}$
(2) $I \subset A$: completely prime $\Leftrightarrow A / I$: integral domain
(3) $I \subset A:$ semi-prime ideal $\Leftrightarrow\binom{A / I \supset J:$ nilpotent ideal }{$\Rightarrow J=(0)}$

By translation principle, $\operatorname{Prim}(\rho) \simeq \operatorname{Prim}(\rho+\lambda) \forall \lambda \in P^{+}(\Delta)$
$\Delta=\Delta(\mathfrak{g}, \mathfrak{h}):$ roots
$P^{+}(\Delta)$: dominant integral weights

Parametrization of $\operatorname{Prim}(\rho)$?

$w \in W$

$$
\begin{array}{rl}
M_{w} & =M(w \rho-\rho): \text { Verma module with h.w. } w \rho-\rho \\
& \downarrow: \text { surjection } \\
L_{w} & L(w \rho-\rho): \text { its irreducible quotient }
\end{array}
$$

Theorem 1.2 (Duflo, 1977 [Duflo]) $\varphi: W \ni w \mapsto \operatorname{Ann} L_{w} \in \operatorname{Prim}(\rho)$ is surjective.
Actually Duflo proved more. He proved the theorem for general central character χ_{λ} 's, which are possibly singular.

Classification of $\operatorname{Prim}(\rho) \Leftrightarrow$ determination of fibers of φ

$$
\Leftrightarrow\left\{\begin{array}{l}
\text { description of equivalence relation on } W: \\
w \sim w^{\prime} \stackrel{\text { def. }}{\Longleftrightarrow} \varphi(w)=\varphi\left(w^{\prime}\right)
\end{array}\right.
$$

This equivalence relation defines the left cells in W, i.e., $\Gamma=\Gamma(w)=\left\{w^{\prime} \mid \varphi(w)=\varphi\left(w^{\prime}\right)\right\}$ is a left cell (Joseph and Vogan, 1980). ${ }^{2}$
Write \sim instead of \sim.
L
Example 1.3 type A_{n-1}. $W \simeq \mathfrak{S}_{n}$: symmetric group of order n

$$
\mathfrak{S}_{n} \ni w \longmapsto\left(T_{w}^{L}, T_{w}^{R}\right) \quad: \text { pair of standard tableaux of the same shape }
$$ Robinson-Schensted

$\underset{\mathrm{L}}{w \sim} w^{\prime} \Leftrightarrow T_{w}^{L}=T_{w^{\prime}}^{L}\left(\right.$ Barbasch-Vogan, 1982 [BVI, p.171]). ${ }^{3}$
$\mathfrak{h}^{*} \ni \mu \mapsto \operatorname{rk}(U(\mathfrak{g}) / \operatorname{Ann} L(\mu-\rho))=: p(\mu) \quad$ rk: Goldie rank^{4}. $P^{\prime}(\Delta)$: regular integral weights, $P(\Delta)^{++}=\left\{\mu \in P^{\prime}(\Delta) \mid \mu\right.$: dominant $\}$

Theorem 1.4 (Joseph, 1980 [JI, Cor. 5.12]) For $w \in W, p(w \mu)$ is a polynomial on $P(\Delta)^{++}$. Denote this polynomial by $p_{w}(\mu)$: Joseph's Goldie rank polynomial.

REmark. Using the notion of "coherent family", this theorem is more comprehensive. $p_{w}(\mu)$ coincides with the character polynomial (up to scalar multiple) of the coherent family containing L_{w}. (Joseph, 1980 [JII, Theorem 5.1]. Cf. King, 1981 [King].)

[^1]$p_{w}(\mu)$: a harmonic polynomial on \mathfrak{h}^{*}, generates an irreducible W-module.
Γ : left cell $\ni w, w^{\prime} \Rightarrow p_{w}(\mu)=p_{w^{\prime}}(\mu)$ (by definition they take the same value on $\rho+$ they are proportional. See [JI, Cor.5.12])
\Longrightarrow Write $p_{\Gamma}(\mu)=p_{w}(\mu) \quad(w \in \Gamma)$.
$\forall \sigma \in W^{\vee}$
$$
\mathcal{C}_{\sigma}:=\coprod\left\{\Gamma \mid \mathbb{C} W p_{\Gamma} \simeq \sigma\right\} \subset W
$$
$\mathcal{C}=\mathcal{C}_{\sigma}:$ two-sided cell in W (if $\left.\mathcal{C}_{\sigma} \neq \emptyset^{5}\right)$
equivalence relation $\underset{\mathrm{LR}}{\sim} w^{\prime}\left(\Leftrightarrow w, w^{\prime} \in \exists \mathcal{C}\right)$
$\sigma \in W^{\vee}:$ special representation $\stackrel{\text { def. }}{\Leftrightarrow} \mathcal{C}_{\sigma} \neq \emptyset$
$$
\operatorname{dim} \sigma=\#\left\{\Gamma \mid \Gamma \subset \mathcal{C}_{\sigma}: \text { left cell }\right\} \Rightarrow \# \operatorname{Prim}(\rho)=\sum_{\sigma \in W^{\vee}: \text { special }} \operatorname{dim} \sigma
$$

Example 1.5 type $A_{n-1} . \forall \sigma \in \mathfrak{S}_{n}^{\vee}$: special $\leftrightarrow Y_{\sigma}$: Young diagram

$$
\begin{aligned}
\mathcal{C}_{\sigma} & =\left\{w \leftrightarrow\left(T_{w}^{L}, T_{w}^{R}\right) \mid T_{w}^{L} \text { has the shape } Y_{\sigma}\right\} \\
\cup & \Gamma \\
\Longrightarrow \#\left\{\Gamma \mid \Gamma \subset \mathcal{C}_{\sigma}\right\} & \left.=\#\left\{\left(T_{w}^{L}, T_{w}^{R}\right)\right\}: \text { for the fixed standard tableau of the shape } Y_{\sigma}\right\}=\operatorname{dim} \sigma \\
\# & \operatorname{Prim}(\rho)= \\
\#\{\Gamma \subset \mathcal{C}\} & =\#\{\text { involutions } \in \mathcal{C}\} \quad \text { ([Duflo, Proposition 9], cf. [Borho, } \S 5.9])
\end{aligned}
$$

Remark. The above left (or two-sided) cells can be defined by using only combinatoric properties of a Coxeter system (by Kazhdan-Lusztig [KL]). So they are defined for general Coxeter groups, not only for Weyl groups. See [BVII, Remark after Cor.2.16].

$$
\operatorname{Char} L_{w}=\sum_{w^{\prime} \in W} a_{w, w^{\prime}} \operatorname{Char} M_{w^{\prime}}\left(a_{w, w^{\prime}} \in \mathbb{Z}\right)
$$

$a_{w, w^{\prime}}$ is explicitly determined (Kazhdan-Lusztig conjecture). But we do not need the explicit information.

$$
\begin{aligned}
a(w):= & \sum_{w^{\prime} \in W} a_{w, w^{\prime}} w^{\prime} \in \mathbb{C} W \\
D(w):= & \left\{w^{\prime} \mid a\left(w^{\prime}\right) \in[\mathbb{C} W a(w)]\right\}=\left\{w^{\prime} \mid \text { Ann } L_{w^{\prime}} \supset \text { Ann } L_{w}\right\} \\
& \text { The second equality is due to Vogan [Vogan]. }
\end{aligned}
$$

[^2]Here, $[S]$ means a-basal subspace ${ }^{7}$ in $\mathbb{C} W$ spanned by S.

Theorem 1.6 (Joseph [Joseph], Vogan [Vogan])

$$
w_{\mathrm{L}}^{\prime} w \Longleftrightarrow\left[\mathbb{C} W a\left(w^{\prime}\right)\right]=[\mathbb{C} W a(w)]
$$

For Γ : a left cell $(w \in \Gamma)$, we put ${ }^{8}$

$$
\sigma_{\Gamma}:=\sum_{w^{\prime} \in D(w)}\left[\mathbb{C} W a\left(w^{\prime}\right)\right] / \sum_{w^{\prime \prime} \in D(w), w^{\prime \prime} \notin \Gamma}\left[\mathbb{C} W a\left(w^{\prime \prime}\right)\right] \quad \begin{aligned}
& \text { left cell representation, not } \\
& \text { irreducible in general }
\end{aligned}
$$

Similarly put

$$
C(w)=\left\{w^{\prime} \mid a\left(w^{\prime}\right) \in[\mathbb{C} W a(w) W]\right\}
$$

Theorem 1.7 ([BVII, Cor.2.16])

$$
\underset{\mathrm{LR}}{\sim} w^{\prime} \Longleftrightarrow\left[\mathbb{C} W a\left(w^{\prime}\right) W\right]=[\mathbb{C} W a(w) W]
$$

For $\mathcal{C}:$ a two-sided cell $(w \in \mathcal{C})$, we put ${ }^{9}$

$$
\sigma_{\mathcal{C}}:=\sum_{w^{\prime} \in C(w)}\left[\mathbb{C} W a\left(w^{\prime}\right) W\right] / \sum_{w^{\prime \prime} \in C(w), w^{\prime \prime} \notin \mathcal{C}}\left[\mathbb{C} W a\left(w^{\prime \prime}\right) W\right] \quad: \text { two-sided cell representation }
$$

As a $W \times W$-module,

$$
\sigma_{\mathcal{C}}=\sum_{\tau}^{\oplus} \tau \otimes \tau \text { (multiplicity free) }
$$

$$
\mathcal{F}_{\mathcal{C}}:=\left\{\tau \in W^{\vee} \mid\left[\sigma_{\mathcal{C}}: \tau \otimes \tau\right]=1\right\} \subset W^{\vee}: \text { a family associated to } \mathcal{C}
$$

$\mathcal{F}=\mathcal{F}_{\mathcal{C}}$ is also called two-sided cell ${ }^{10}$ in W^{\vee}.

$$
W^{\vee}=\coprod_{\mathcal{C}: \text { two-sided cell }} \mathcal{F}_{\mathcal{C}}
$$

$\forall \mathcal{F}_{\mathcal{C}}$ contains exactly one special representation, i.e., $\left\{\right.$ special representations $\left.\in W^{\vee}\right\}$ gives a complete system of representatives for families.

[^3]
2 Invariant for cells

We want to define an invariant for families $\{\mathcal{F}\}$.
The present observations are experimental ones ${ }^{11}$.
Gyoja(1983) [Gyoja]: $\sigma \in H_{q}(W)^{\vee}, H_{q}(W):$ an Iwahori-Hecke algebra ${ }^{12}$

$$
L(t, \sigma)=L(t, q, \sigma):=\sum_{w \in W} \sigma(w) t^{l(w)}(l(w): \text { length function })
$$

$L(t, \sigma): \begin{cases}\exists \text { functional equation } \\ \text { distribution of zeros and poles }{ }^{13} & \text { are similar to zeta functions }{ }^{14} \text { (congruence } \\ \text { zeta functions on algebraic varieties) } .\end{cases}$
Iwahori's suggestion Take $l^{\prime}(w)$ instead of $l(w)$;

$$
l^{\prime}(w):=\binom{\text { minimal of } m, \text { where } w=r_{1} r_{2} \cdots r_{m},}{r_{i}: \text { reflection (not necessarily simple) }}
$$

(Cf. for type $A, \# \operatorname{Prim}(\rho)=\#\{$ involutions $\}$)
Remark. $W \curvearrowright V$: natural representation, $V(w):=\{v \in V \mid w v=v\}(w \in W)$.
Then $l^{\prime}(w)=\operatorname{codim} V(w)$.

Gyoja-N.-Shimura :

$\sigma \in W^{\vee}, W$: not an Iwahori-Hecke algebra, but a finite Weyl group.

$$
c(\sigma, t):=\sum_{w \in W}(\operatorname{trace} \sigma(w)) t^{l^{\prime}(w)}
$$

Does $c(\sigma, t)$ classify cells? : $(c(\sigma, t)$ is computable! $)$
For types $A_{l}, B_{l}\left(=C_{l}\right), G_{2}$: yes! i.e.,

$$
\sigma_{1} \underset{\mathrm{LR}}{\sim} \sigma_{2}^{\iota}(\iota \in \operatorname{Aut}(W, S)) \Leftrightarrow c\left(\sigma_{1}, t\right)=c\left(\sigma_{2}, t\right)
$$

(σ_{1} and σ_{2}^{ι} belong to the same family)
For Weyl groups of the other types, some deviation occurs.

[^4]$$
L(t, \sigma)=\sigma\left(T_{w_{0}}\right) t^{l\left(w_{0}\right)} L\left((-q t)^{-1}, \widehat{\sigma}\right), w_{0}: \text { the longest element, } \quad \widehat{\sigma}\left(T_{w}\right)=(-q)^{l(w)}\left(T_{w^{-1}}\right)^{-1} .
$$
zeros:
$$
t=\zeta q^{-i / 2 m}, \zeta: \text { root of unity, } \quad i, m \in \mathbb{Z} \text { s.t. } 1 \leq m \leq l\left(w_{0}\right), 0 \leq i / 2 m \leq 1
$$

Want to avoid the deviation.

$W \curvearrowright V$: natural representation, $\left\{m_{i}\right\}$: exponents, $H(V)=\oplus_{n} H^{n}(V)$: harmonic polynomials
$\sigma \in W^{\vee}, \chi=$ Char σ

$$
\begin{aligned}
\tilde{\tau}(q, y)(w) & :=\frac{\operatorname{det}(1+y w \mid V)}{\operatorname{det}(1-q w \mid V)} \\
\tilde{\tau}(\sigma ; q, y) & :=\langle\chi, \tilde{\tau}(q, y)\rangle_{W} \\
& =\frac{1}{\# W} \sum_{w \in W} \chi\left(w^{-1}\right) \tilde{\tau}(q, y)(w) \\
& =\sum_{i, j}\left\langle S^{i}(V) \otimes \wedge^{j}(V), \chi\right\rangle_{W} q^{i} y^{j} \\
& =\frac{\operatorname{dim} \sigma}{\prod_{i=1}^{l}\left(1-q^{m_{i}+1}\right)} \sum_{n, m \geq 0}\left[\chi: H^{n}(V) \otimes \bigwedge^{m}(V)\right] q^{n} y^{m}
\end{aligned}
$$

Proposition $2.1 \quad l:=\operatorname{dim} V: \operatorname{rank}$ of W

$$
\frac{\# W}{\operatorname{dim} \sigma} \lim _{q \rightarrow 1} \tilde{\tau}(\sigma ; q,-1+t(1-q))=t^{l} c\left(\sigma ; t^{-1}\right)
$$

$\Longrightarrow \tilde{\tau}(\sigma ; q, y)$ refines the property of $c(\sigma, t)$.
From now on, W is assumed to be irreducible.
Observation $2.2 \tilde{\tau}(\sigma ; q, y)$ has many factors of the same type $\left(1+q^{c} y\right)(c \in \mathbb{Z})$.
Example 2.3 (Or a proposition)

$$
\begin{gathered}
\#(\text { family })=1 \Rightarrow \tilde{\tau}(\sigma ; q, y)=f(q) \prod_{i=1}^{\mathrm{rank}}\left(1+q^{c_{i}} y\right) \\
\tilde{\tau}(\text { trivial } ; q, y)=\prod_{i=1}^{l} \frac{1+y q^{m_{i}}}{1-q^{m_{i}+1}}
\end{gathered}
$$

Example 2.4 (See §3) type $A_{l-1}: W \simeq \mathfrak{S}_{l}$

$$
\tilde{\tau}\left(\chi^{\lambda} ; q, y\right)=q^{n(\lambda)} \prod_{x \in \lambda} \frac{1+q^{c(x)} y}{1-q^{h(x)}} \lambda: \text { partition and tableau }
$$

notations: (cf. Macdonald's book [M])

$$
n(\lambda)=\sum(i-1) \lambda_{i}, x=(i, j) \in \lambda \in \mathbb{Z}^{2}, c(x)=j-i, h(x)=\text { hook length }
$$

We put $\tau_{1}(\sigma ; q, y)=\prod_{i=1}^{\kappa(\sigma)}\left(1+q^{c_{i}} y\right)$: the largest factor of $\tilde{\tau}(\sigma ; q, y)$ including only the factors $\left(1+q^{c} y\right)(c \in \mathbb{Z})$.

Theorem 2.5 If
(1) W is of type $A_{l}, B_{l}\left(=C_{l}\right), G_{2}$ or
(2) W is of type $D_{l}, F_{4}, E_{l}(l=6,7,8)$ and $\#(f a m i l y) \leq 3$, then

$$
\sigma_{1} \sim \sigma_{2 R} \sigma_{2}^{l}(\iota \in \operatorname{Aut}(W, S)) \Leftrightarrow \tau_{1}\left(\sigma_{1} ; q, y\right)=\tau_{1}\left(\sigma_{2} ; q, y\right)
$$

i.e., σ_{1} and σ_{2}^{l} belong to the same family.

REmARK. Even for the case $\#(f a m i l y) \geq 5$, the above theorem is almost true. We can attach linear factors like $\tau_{1}(\sigma ; q, y)$ for each $\sigma \in W^{\vee}$, but it is not the largest linear factor (i.e., we must choose "special" linear factors).

Remark. If \#(family) $=3$,

$$
\tilde{\tau}\left(\sigma_{1} ; q, y\right)+\tilde{\tau}\left(\sigma_{2} ; q, y\right)=f(q) \prod_{i}\left(1+q^{d_{i}} y\right) \quad\left(d_{i} \in \mathbb{Z}\right)
$$

for any two representations σ_{1}, σ_{2} in the family.
Similar phenomena occur for the case of type D_{l} (and \#(family) $\left.\geq 5\right)$.
The set of (computable) integers

$$
\left(c_{1}, c_{2}, \cdots, c_{\kappa(\sigma)}\right)
$$

determines a family (or two-sided cell) in W^{\vee} (for W in the theorem).
If we overcome the deviation explained above (i.e., the case of $\#(f a m i l y) \geq 5$), the computable invariants $\left(c_{i}\right)$ really classifies families (or two-sided cells) in W^{\vee} (even for nonirreducible W 's).
Problem 2.6 (1) Find a method to choose special linear factors for exceptions of the above theorem.
(2) The above consideration is an experimental one. Clarify the meaning of the invariants $\left(c_{i}\right)$ from the view points of the representation theory of Weyl groups or Iwahori-Hecke algebras, theory of primitive ideals, finite Chevalley groups, modular representation theory

3 Calculation of $\tilde{\tau}$ for type A

This section is almost borrowed from Macdonald's book: [M].
First, let us introduce some general theory from [M, §I. 2 and $\S \mathrm{I} .3]$. In the following, t is an indeterminate and h_{r}, e_{r}, p_{r} are coefficients;

$$
\begin{aligned}
H(t) & =\sum_{r \geq 0} h_{r} t^{r}\left(h_{0}=1\right) \\
E(t) & :=1 / H(-t)=\sum_{r \geq 0} e_{r} t^{r} \\
P(t) & :=\frac{d}{d t} \log H(t)=H^{\prime}(t) / H(t)=\sum_{r \geq 0} p_{r} t^{r}
\end{aligned}
$$

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right)$, put

$$
h_{\lambda}=\prod_{i \geq 1} h_{i}^{\lambda_{i}}, \quad e_{\lambda}=\prod_{i \geq 1} e_{i}^{\lambda_{i}}, \quad p_{\lambda}=\prod_{i \geq 1} p_{i}^{\lambda_{i}} .
$$

Theorem 3.1

$$
h_{r}=\sum_{|\lambda|=r} \frac{1}{z_{\lambda}} p_{\lambda}, e_{r}=\sum_{|\lambda|=r} \frac{\varepsilon_{\lambda}}{z_{\lambda}} p_{\lambda}
$$

Here, we used the following notation;

$$
\begin{aligned}
z_{\lambda} & :=\prod_{i \geq 1} i^{m_{i}} m_{i}!\left(\lambda=\left(1^{m_{1}} \cdot 2^{m_{2}} \cdot 3^{m_{3}} \cdots\right) \text { i.e., } m_{i}=\#\left\{j \mid \lambda_{j}=i\right\}\right) \\
& =\frac{\#\left(\text { conjugacy class in } \mathfrak{S}_{n} \text { corresponding to } \lambda\right)}{n!} \quad(n=|\lambda|) \\
\varepsilon_{\lambda} & :=(-1)^{|\lambda|-l(\lambda)}
\end{aligned}
$$

Theorem 3.2 Put

$$
\begin{aligned}
s_{\lambda} & :=\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq n}(n \geq l(\lambda)) \\
& =\sum_{w \in \mathfrak{S}_{n}} \varepsilon(w) h_{\lambda+\delta-w \delta} \\
& =\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq m}\left(m \geq l\left(\lambda^{\prime}\right)\right)
\end{aligned}
$$

Now put $n:=|\lambda|(\geq l(\lambda))$ and take the character χ^{λ} of \mathfrak{S}_{n} corresponding to λ. Then we have

$$
s_{\lambda}=\sum_{\mu} \frac{1}{z_{\mu}} \chi^{\lambda}(\mu) p_{\mu},
$$

where μ runs over all the partitions of n (i.e., conjugacy classes of \mathfrak{S}_{n}).

Example 3.3 ([M, §I. 2 and $\S \mathrm{I} .3]$) Let $\left\{x_{i}\right\}$ be the set of indeterminates.

$$
\begin{gathered}
H(t):=\prod_{i=1}^{n} \frac{1}{1-x_{i} t} \\
\Rightarrow\left\{\begin{array}{cc}
h_{r} \quad: \text { complete symmetric function of degree } r \\
e_{r} & : \text { elementary symmetric function of degree } r \\
p_{r} & =\sum_{i=1}^{n} x_{i}^{r}
\end{array}\right. \\
s_{\lambda}=\frac{a_{\lambda+\delta}}{a_{\delta}}: \text { Schur function } \\
=\frac{\sum_{w \in \mathfrak{S}_{n}} \varepsilon(w) w\left(x^{\lambda+\delta}\right)}{\sum_{w \in \mathfrak{S}_{n}} \varepsilon(w) w\left(x^{\delta}\right)}(\delta=(n-1, n-2, \cdots, 0))
\end{gathered}
$$

Example 3.4 ([M, §I. 2 Ex. 3 and §I. 3 Ex.1]) Let q be an indeterminates.

$$
\begin{gathered}
H(t):=\prod_{i=0}^{n-1} \frac{1}{1-q^{i t}} \\
\Rightarrow h_{r}=\left[\begin{array}{c}
\left.n+\begin{array}{c}
r-1 \\
r
\end{array}\right], \quad e_{r}=q^{r(r-1) / 2}\left[\begin{array}{l}
n \\
r
\end{array}\right], \quad p_{r}=\frac{1-q^{n r}}{1-q^{r}} \\
{\left[\begin{array}{l}
n \\
r
\end{array}\right]:=\frac{\prod_{j=1}^{r}\left(1-q^{n-j+1}\right)}{\prod_{i=1}^{r}\left(1-q^{i}\right)} \quad: q \text {-binomial coefficient }} \\
s_{\lambda}=q^{n(\lambda)} \prod_{x \in \lambda} \frac{1-q^{n+c(x)}}{1-q^{h(x)}}\left\{\begin{array}{ll}
c(x) & : \text { content } \\
h(x) & : \text { hook length } \\
n(\lambda) & =\sum_{i \geq 1}(i-1) \lambda_{i}
\end{array} \quad\right. \text { (See Example 2.4) }
\end{array} .\right.
\end{gathered}
$$

Example 3.5 ([M, §I. 2 Ex. 4 and §I. 3 Ex.2]) Let $n \rightarrow \infty$ in Example 3.4.

$$
\begin{gathered}
H(t):=\prod_{i \geq 0} \frac{1}{1-q^{i} t} \\
\Rightarrow h_{r}=\prod_{i=1}^{r} \frac{1}{1-q^{i}}, \quad e_{r}=q^{r(r-1) / 2} h_{r}, \quad p_{r}=\frac{1}{1-q^{r}} \\
s_{\lambda}=q^{n(\lambda)} \prod_{x \in \lambda} \frac{1}{1-q^{h(x)}}
\end{gathered}
$$

Example 3.6 ([M, §I. 2 Ex. 5 and §I. 3 Ex.3] and [Andrews, Chap.II])

Let a and b be indeterminates.

$$
\begin{gathered}
H(t):=\prod_{i \geq 0} \frac{1-b q^{i} t}{1-a q^{i} t} \\
\Rightarrow h_{r}=\prod_{i=1}^{r} \frac{a-b q^{i-1}}{1-q^{i}}, \quad e_{r}=\prod_{i=1}^{r} \frac{a q^{i-1}-b}{1-q^{i}}, \quad p_{r}=\frac{a^{r}-b^{r}}{1-q^{r}} \\
s_{\lambda}=q^{n(\lambda)} \prod_{x \in \lambda} \frac{a-b q^{c(x)}}{1-q^{h(x)}}
\end{gathered}
$$

Proof for the last statement on s_{λ} :
Substitute $t \rightarrow t / a$ and we have $s_{\lambda} / a^{|\lambda|}$ instead of s_{λ}. So we can assume $a=1$. Next, note that the both hand sides of the equation to be proved are polynomials in b. If $b=q^{n}(n=1,2, \cdots)$, it reduces to Example 3.5, hence the equation is valid for infinitely many value of b. We are done.

In the above Example 3.6, substitute $a=1$ and $b=-y$. For $\sigma=(1,2, \cdots, r) \in \mathfrak{S}_{r}$: cyclic permutation, we have

$$
\begin{gathered}
\operatorname{det}\left(1-q \sigma \mid \mathbb{C}^{r}\right)=1-q^{r} . \\
\Longrightarrow \quad p_{r}=\frac{1-(-y)^{r}}{1-q^{r}}=\frac{\operatorname{det}\left(1+y \sigma \mid \mathbb{C}^{r}\right)}{\operatorname{det}\left(1-q \sigma \mid \mathbb{C}^{r}\right)}
\end{gathered}
$$

\Longrightarrow For $w \in \mathfrak{S}_{n}$ with cyclic type μ;

$$
\begin{aligned}
& p_{\mu}=\frac{\operatorname{det}\left(1+y w \mid \mathbb{C}^{n}\right)}{\operatorname{det}\left(1-q w \mid \mathbb{C}^{n}\right)}(=\tilde{\tau}(q, y)(w)) \\
s_{\lambda}= & q^{n(\lambda)} \prod_{x \in \lambda} \frac{1+y q^{c(x)}}{1-q^{h(x)}}(\text { by Example 3.6) } \\
= & \sum_{\mu} \frac{1}{z_{\mu}} \chi^{\lambda}(\mu) p_{\mu}(\text { by Theorem 3.2) } \\
= & \frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \chi^{\lambda}(w) p_{\mu(w)}(\mu(w): \text { cyclic type of } w) \\
= & \frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \chi^{\lambda}(w) \tilde{\tau}(q, y)(w) \text { (by the above) } \\
= & \langle\chi, \tilde{\tau}(q, y)\rangle_{\mathfrak{S}_{n}}=\tilde{\tau}(\chi ; q, y)
\end{aligned}
$$

4 Comments and references

Mathiew :

$\mathcal{H}:=\mathbb{C}^{l} \backslash\left\{z_{i}=z_{j}\right\}$
cohomology $H^{i}(\mathcal{H}): \operatorname{dim} H^{i}(\mathcal{H})=\#\left\{w \in \mathfrak{S}_{l} \mid l^{\prime}(w)=i\right\}$
Is there any relation?
(Cf. Brieskorn [Brieskorn] and Orlik [Orlik].)

Schiffmann :

Is there a formula for $\kappa(\sigma)$?

$$
\tau_{1}(\sigma ; q, y)=\prod_{i=1}^{\kappa(\sigma)}\left(1+q^{c_{i}} y\right)
$$

partial answer:

$$
\begin{cases}\text { type } A_{l-1}: & \kappa(\sigma)=l \\ \text { type } E_{l} \& \#(\text { family })=3: & \kappa(\sigma)=l-2 \\ \text { etc. } & \end{cases}
$$

Tanisaki :

How about for Hecke algebra $H_{q}(W)$?

$$
L^{\prime}(\sigma ; t):=\sum_{w \in W} \sigma\left(T_{w}\right) t^{t^{\prime}(w)}
$$

Oshima :

$l^{\prime}(w)$ can be expressed as a linear sum of characters. Is there a closed formula indicating this fact?
partial answer:

$$
c(\chi ; t):=\left.\sum_{w \in W} \chi(w) t^{t^{\prime}(w)} \Rightarrow \frac{d}{d t} c(\chi ; t)\right|_{t=1}=\# W \cdot\left\langle\chi, l^{\prime}\right\rangle_{W}
$$

Since $l^{\prime}(w)=\sum_{\chi}\left\langle\chi, l^{\prime}\right\rangle_{W} \chi(w)$, we have

$$
l^{\prime}(w)=\frac{1}{\# W} \sum_{\chi}\left(\left.\frac{d}{d t} c(\chi ; t)\right|_{t=1}\right) \chi(w)=\left.\frac{d}{d t}\left(\frac{1}{\# W} \sum_{\chi} c(\chi ; t) \chi(w)\right)\right|_{t=1}
$$

References

[Andrews] G. E. Andrews, The theory of partitions. Encyclopaedia of mathematics and its applications, 2, Addison Wesley, 1976.
[Brieskorn] E. Brieskorn, Sur les groupes de tresses. Séminaire Bourbaki, 401(1971/72).
[BVI] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex classical groups. Math. Ann., 259(1982), 153-199.
[BVII] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex exceptional groups. J. Alg., 80(1983), $350-382$.
[Borho] W. Borho, Recent advances in enveloping algebras of semisimple Lie algebras. Séminaire Bourbaki, 489(1976/77).
[Dixmier] J. Dixmier, Enveloping Algebras. North-Holland, 1977.
[Duflo] M. Duflo, Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple. Ann. Math., 105(1977), 107 - 120.
[Gyoja] A. Gyoja, A generalized Poincaré series associated to a Hecke algebra of finite or p-adic Chevalley group. Japan J. Math., 9(1983), 87-111.
[JI] A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra, I. J. Alg., 65(1980), $269-283$.
[JII] A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra, II. J. Alg., 65(1980), $284-306$.
[Joseph] A. Joseph, W-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra. $L N M, 728(1979), 116-135$.
[KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(1979), 165 - 184.
[King] D. R. King, The character polynomial of the annihilator of an irreducible Harish Chandra module. Amer. J. Math., 103(1981), 1195-1240.
[LI] G. Lusztig, A class of irreducible representations of a Weyl group. Proc. Kon. Nederl. Akad., A 82(1979), 323-335.
[LII] G. Lusztig, A class of irreducible representations of a Weyl group II. Proc. Kon. Nederl. Akad., A 85(1982), 219 - 226.
[Orange Book] G. Lusztig, Characters of reductive groups over a finite field. Princeton Univ. Press, 1984.
[M] I. G. Macdonald, Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford, 1979.
[Orlik] P. Orlik, Introduction to arrangements CBMS Regional Conference Ser. in Math., 72(1989), AMS.
[Vogan] D. Vogan, Ordering of the primitive spectrum of a semisimple Lie algebra. Math. Ann., 248(1980), 195 - 203.

[^0]: ${ }^{1}$ There are several notions of primitivity in $U(\mathfrak{g})$ (cf. Dixmier [Dixmier]).

 | $I: \underset{~ m a x i m a l ~}{\Downarrow}$ | | |
 | :---: | :---: | :---: |
 | $I:$ primitive | \Rightarrow | $I:$ completely prime |
 | \Downarrow | | |
 | \Downarrow | $I:$ prime | |$\quad \Rightarrow \quad I:$ semi-prime

[^1]: ${ }^{2}$ This is the definition of left cell Γ here, but historically, the left cells are defined by Lusztig by using purely algebraic structures of Coxeter groups. The equivalence of two definitions are established by Joseph and Vogan. See Theorem 1.6.
 ${ }^{3}$ If $\underset{\mathrm{R}}{\sim}$ is similarly defined by using the right annihilators, then $\underset{\mathrm{R}}{w} w^{\prime} \Leftrightarrow T_{w}^{R}=T_{w^{\prime}}^{R}$.
 For two-sided cells, $w \underset{\mathrm{LR}}{\sim} w^{\prime} \Leftrightarrow T_{w}^{L}$ and $T_{w^{\prime}}^{L}$ have the same shape $\Leftrightarrow T_{w}^{R}$ and $T_{w^{\prime}}^{R}$ have the same shape .
 ${ }^{4} A$: a prime ring (i.e., (0) is a primitive ideal $\Leftrightarrow \exists$ faithful irreducible representation)
 Then $\operatorname{Fract}(A) \simeq \operatorname{Mat}(n \times n, D)$ for some division ring D. Define $\operatorname{rk} A:=n$.

[^2]: ${ }^{5}$ This is not empty iff σ is a special representation. See below.
 ${ }^{6}$ Special representations are originally introduced by Lusztig ([LI, LII]). However, two different notions coincide ([BVII, Theorem 2.29]).

[^3]: ${ }^{7}$ A subspace in $\mathbb{C} W$ is called a-basal if it has basis consisting of $a(w)$'s. See Joseph II 298 p. Note that $\{a(w) \mid w \in W\}$ forms a basis of $\mathbb{C} W$. In the original version of this note, I misunderstood the definition of $D(w)$; Tanisaki kindly pointed it out.
 ${ }^{8}$ The first summation in the right hand side of the next formula is surplus.
 ${ }^{9}$ Here, the summation is also surplus.
 ${ }^{10}$ Original definition of family is very complicated one ([Orange Book, $\left.\S 4.2\right]$). However it coincides with the definition presented here (Barbasch-Vogan [BVII, Theorem 2.29], cf. [Orange Book, Theorem 5.25]).

[^4]: ${ }^{11}$ M. Sato: Every mathematician should be an experimentalist.
 ${ }^{12}$ For a long time, $H_{q}(W)$ is simply called Hecke algebra. Recently, it becomes to be called IwahoriHecke algebra. For this, see Introduction of [Orange Book].
 ${ }^{14}$ In case of affine Weyl groups, poles appear. However, in this note, Weyl groups always remain finite.
 ${ }^{14}$ Functional equation:

