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1 Introduction to cells

«primitive ideals of U(g) (g : semisimple Lie algebra)
xrepresentation theory of finite Chevalley groups (unipotent representations)
xmodular representation theory

etc.

cells:

Since I am not a specialist of finite Chevalley groups or modular representation theory, I
will explain properties of cells through primitive ideals of U(g).

Role in the theory of primitive ideals:
g : a semisimple Lie algebra /C

U(g) : the enveloping algebra D 3 : center
gD h: CSA, W =W(g,bh) : Weyl group

35 U(h)" : Harish-Chandra isomorphism

For A e b*, Ixn: 3 — C :algebra hom.
¢ /*  evaluation at A
Uh)" =S()"

X : the central character corresponding to A: Note that x) = xwr (w € W).
L : an irreducible left U(g)-module

AnmnL ={X € U(g)| XI =0 (VI € L)} : primitive ideal'

Ann LN 3 =kery, (3N € bh") £ AnnL e Prim(\) : primitive ideals with
central character x)

PrimU(g) = H Prim(\)
Aeh* /W

Example 1.1 Prim(p) > Ann(trivial rep.)

!There are several notions of primitivity in U(g) (cf. Dixmier [Dixmier]).

I : maximal I : completely prime
I I
I : primitive = I : prime = [ : semi-prime

A>1: ring

. AJ/I DV Jy,Jo : ideals #0
(1) I C A : prime ideal & < — Ji-Js £ (0)
2) I C A : completely prime <& A/I : integral domain
(2) g
A/I D J : nilpotent ideal >

(3) I C A : semi-prime ideal & ( = J=(0)



By translation principle, Prim(p) ~ Prim(p + \) VA € PT(A)
A = A(g, b) : roots

PT(A) : dominant integral weights

Parametrization of Prim(p)?

weW

M, = M(wp—p) : Verma module with h.w. wp — p
J @ surjection
L,= L(wp—p) : itsirreducible quotient

Theorem 1.2 (Duflo, 1977 [Duflo]) ¢ : W > w +— Ann L,, € Prim(p) is surjective.
Actually Duflo proved more. He proved the theorem for general central character x,’s,
which are possibly singular.

Classification of Prim(p) < determination of fibers of ¢
{description of equivalence relation on W :

w o~ w' E p(w) = p(u)
This equivalence relation defines the left cells in W, i.e., I' = I'(w) = {w'| p(w) = p(w')}

is a left cell (Joseph and Vogan, 1980).2
Write ~ instead of ~.

Example 1.3 type A,,_;. W ~ &,, : symmetric group of order n

S,> w — (TE,TE) : pair of standard tableaux of the same shape
Robinson-Schensted

wf;w' & TE = TE (Barbasch-Vogan, 1982 [BVI, p.171]).3

h* > p—rk(U(g)/ Ann L(pn — p)) =: p(p) rk : Goldie rank®.
P'(A) : regular integral weights, P(A)™" = {u € P'(A)| p : dominant}

Theorem 1.4 (Joseph, 1980 [JI, Cor. 5.12]) For w € W, p(wpu) is a polynomial on
P(A)**. Denote this polynomial by p, (i) : Joseph’s Goldie rank polynomial.

REMARK. Using the notion of “coherent family”, this theorem is more comprehensive.
pw(p) coincides with the character polynomial (up to scalar multiple) of the coherent
family containing L,,. (Joseph, 1980 [JII, Theorem 5.1]. Cf. King, 1981 [King].)

2This is the definition of left cell T' here, but historically, the left cells are defined by Lusztig by
using purely algebraic structures of Coxeter groups. The equivalence of two definitions are established
by Joseph and Vogan. See Theorem 1.6.

31f > is similarly defined by using the right annihilators, then w;{w' & Tf = Tf,.

For two-sided cells, w ~w' < T and TL have the same shape < TF and T have the same shape .
LR

1A : a prime ring (i.e., (0) is a primitive ideal < 3 faithful irreducible representation)
Then Fract(A) ~ Mat(n x n, D) for some division ring D. Define rk A := n.



Pw(ft) : a harmonic polynomial on h*, generates an irreducible W-module.

[ : left cell > w,w' = py,(p) = pu (i) (by definition they take the same value on p +
they are proportional. See [JI, Cor.5.12])
= Write pr(u) = pu(p) (w€T).

Yo e WY
Co = [[{TICWpr ~ 0} c W

C =C, : two-sided cell in W (if C, # (%)
equivalence relation w;:f{w’ (e w,w" € 3C)

o€ WY : special representation® & C, £ ()
dimo = #{T|T C C, : left cell } = #Prim(p) = > dim o
scewV @ special
Example 1.5 type A, ;. Vo € &,/ : special <> Y, : Young diagram
C, = {w e (TE,TH)| TE has the shape Y, }

w? w
U

I = {(TL,TH)} : for the fixed standard tableau T.-

w?r T w

— #{[| T C C,} = #{ standard tableau of the shape Y,} = dimo

#Prim(p) = Z dim o = #{ involutions in &,,}
oce6y

#{I' CC} = +#{ involutions € C} ([Duflo, Proposition 9], cf. [Borho, §5.9])

REMARK. The above left (or two-sided) cells can be defined by using only combinatoric
properties of a Coxeter system (by Kazhdan-Lusztig [KL]). So they are defined for general
Cozxeter groups, not only for Weyl groups. See [BVII, Remark after Cor.2.16].

Char Ly = Y ayu Char My (ay,. € Z)

w'eW

aw, is explicitly determined (Kazhdan-Lusztig conjecture). But we do not need the
explicit information.

a(w) = Z Q€ CW
D(w) = {w'| a(v") € [CWa(w)]} = {w'| AnnL,, D Ann L, }

The second equality is due to Vogan [Vogan)].

5This is not empty iff o is a special representation. See below.
6Special representations are originally introduced by Lusztig ([LI, LII]). However, two different notions
coincide ([BVII, Theorem 2.29]).



Here, [S] means a-basal subspace’ in CW spanned by S.
Theorem 1.6 (Joseph [Joseph|, Vogan [Vogan])

w'r;w — [CWa(w')] = [CWa(w)]

For T : a left cell (w € T), we put®

op 1= Z [CW a(w')] Z [CWa(w")] left cell representation, not

irreducible in general
w'€D(w) w" €D (w),w" ¢r

Similarly put
C(w) = {w'| a(w') € [CWa(w)W]}
Theorem 1.7 ([BVII, Cor.2.16])

w;}g{w' — [CWa(w" W] =[CWa(w)W]

For C : a two-sided cell (w € C), we put’
oc = Z [CWa(w" W] Z [CWa(w"YW] : two-sided cell representation
w'eC(w) w" eC(w),w" ¢C

As a W x W-module,

oc = Z® 7 ® 7 (multiplicity free)
Fei={reW|[oc:7@7] =1} C WY : a family associated to C
F = Fe is also called two-sided cell'® in WV.
WY = 1T Fe
¢ : two-sided cell

VFc contains exactly one special representation, i.e., {special representations € WV} gives
a complete system of representatives for families.

"A subspace in CW is called a-basal if it has basis consisting of a(w)’s. See Joseph II 298p. Note that
{a(w)| w € W} forms a basis of CIW. In the original version of this note, I misunderstood the definition
of D(w); Tanisaki kindly pointed it out.

8The first summation in the right hand side of the next formula is surplus.

9Here, the summation is also surplus.

100riginal definition of family is very complicated one ([Orange Book, §4.2]). However it coincides with
the definition presented here (Barbasch-Vogan [BVIL, Theorem 2.29], cf. [Orange Book, Theorem 5.25]).



2 Invariant for cells

We want to define an invariant for families {F}.
The present observations are experimental ones!'!.

Gyoja(1983) [Gyoja] : o € H,(W)", H, (W) : an Iwahori-Hecke algebra'?

L(t,0) = L(t,q,0) := Z o(w)t"™ (I(w) : length function)
weWw
13 are similar to zeta functions'*(congruence

L(t,0) - {EI functional equation
zeta functions on algebraic varieties).

distribution of zeros and poles

Iwahori’s suggestion
—

Take I'(w) instead of I(w);

V(w) = minimal of m, where w = riry-- -7,
W= Ay ¢ reflection (not necessarily simple)
(Cf. for type A, #Prim(p) = #{involutions})

REMARK. W ~ V : natural representation, V(w) := {v € V| wv = v} (w € W).
Then I'(w) = codim V' (w).

Gyoja-N.-Shimura :
o€ WY, W : not an Iwahori-Hecke algebra, but a finite Weyl group.

c(o,t) == Z (trace a(w))tl'(w)

wew

Does c(o,t) classify cells? : (¢(o,t) is computable!)
For types A;, Bi(= (), Gy : yes! i.e.,

Ulfﬁaé (1t € Aut(W,S)) & c(oy,t) = (o9, t)

(01 and b belong to the same family)

For Weyl groups of the other types, some deviation occurs.

M. Sato: Every mathematician should be an experimentalist.

2For a long time, H, (W) is simply called Hecke algebra. Recently, it becomes to be called Iwahori-
Hecke algebra. For this, see Introduction of [Orange Book].

141n case of affine Weyl groups, poles appear. However, in this note, Weyl groups always remain finite.

4 Functional equation:

L(t,0) = 0T, )t L((—qt)*,5), wo : the longest element, 7(Ty) = (—q)" ™) (Tp-1)"".
Zeros:

t=Cq ?™, ¢« root of unity, i,m € Zst. 1<m< l(wp),0 < i/2m < 1.



Want to avoid the deviation.

W ~ V : natural representation, {m;} : exponents, H(V) = &,H"(V) : harmonic

polynomials
o€ WY, x=Charo

det(1 + yw|V)

T (i)
%(UQQ7y) = QX,~(q y)>
- # Z B y)(w)
= Z(Sl(V) X /\j(v), X>quyj
’ dimo )
— Hézl(l — gmit) n%;o [X CH" (V) ® /\

Proposition 2.1 [ :=dimV : rank of W

LW L
1 —14t(1—q)) = te(o;
Gimo im7(o5g, 1 +¢(1 —q)) = te(o3t)

= 7(0;q,y) refines the property of ¢(o,1).

From now on, W is assumed to be irreducible.

]qy:

Observation 2.2 7(o;q,y) has many factors of the same type (1 + ¢%y) (¢ € Z).

Example 2.3 (Or a proposition)

rank

#(family) =1 = 7(o0;q,y H +q“y)

i=1

l .
1+ yq™
7(trivial; ¢, y) = [ | %

Example 2.4 (See §3) type 4;_1 : W ~ &,

1 c(x)
7~'(X/\§ q,y) = qn(/\) H # A : partition and tableau

1—

TEA

notations: (cf. Macdonald’s book [M])

n(\) =) (i—1)\;, ©=(i,j) €\ € Z° c(x) =j—i, h(x) =hook length



cx): [of1]2 4] h@): |86 3|1
—1| 0 2 6 laf2]1
—2|-1 3|1
—3 1

k(o)
We put 71(0; q,y) = H(1+qciy) : the largest factor of 7(o; ¢, y) including only the factors

i=1
(1+q%) (c € Z).
Theorem 2.5 If
(1) W is of type Ai, Bi(= C1), Gy or

(2) W is of type Dy, Fy, E; (I =6,7,8) and #(family) < 3,
then

aivoy (L€ Aut(W,5)) & 70156, y) = 11(0254,9)
i.e., o1 and o} belong to the same family.

REMARK. Even for the case #(family) > 5, the above theorem is almost true. We can
attach linear factors like 7 (05 ¢, y) for each o € WV, but it is not the largest linear factor
(i.e., we must choose “special” linear factors).

REMARK. If #(family) = 3,

Flouqy) + (o2 q.y) = flo) [+ ¢%y) (di € Z)
for any two representations oy, 05 in the family.
Similar phenomena occur for the case of type D; (and #(family) > 5).

The set of (computable) integers

(Cla Coyt ey CH(O’))
determines a family (or two-sided cell) in WV (for W in the theorem).

If we overcome the deviation explained above (i.e., the case of #(family) > 5), the com-

putable invariants (¢;) really classifies families (or two-sided cells) in WV (even for non-
irreducible W’s).

Problem 2.6 (1) Find a method to choose special linear factors for exceptions of the
above theorem.

(2) The above consideration is an experimental one. Clarify the meaning of the invariants
(¢;) from the view points of the representation theory of Weyl groups or Iwahori-Hecke
algebras, theory of primitive ideals, finite Chevalley groups, modular representation theory



3 Calculation of 7 for type A

This section is almost borrowed from Macdonald’s book: [M].

First, let us introduce some general theory from [M, §1.2 and §1.3]. In the following, ¢ is

an indeterminate and h,, e, p, are coefficients;

H(t) = Y ht" (hg=1)

B(t) = I;H(—t):Ze,t’"
PU) = g H() = H()/H() = Y p

For a partition A = (A1, Ag,--+), put

hy = th‘i, ey = Hef‘i, DA = sz)‘l

i>1 i>1 i>1

Theorem 3.1

Here, we used the following notation;

o = [[immt (A= (m2m3me) e, my = #{j] A =i})

i>1
_ #(conjugacy class in &, corresponding to \) _
= = =)
oy = (=)
Theorem 3.2 Put
sy = det(hr—ipj)icijn (0> 1(A))
= Z (W) hrys—ws

weS,
= det(ex iyj)i<ij<m (M > 1(A)

Now put n := |\ (> I()\)) and take the character x* of &,, corresponding to X\. Then we

have

1
= =X (W)pu,

z
PR

where p runs over all the partitions of n (i.e., conjugacy classes of &,).



Example 3.3 ([M, §1.2 and §I.3]) Let {x;} be the set of indeterminates.

h, : complete symmetric function of degree r
= ¢ e, : elementary symmetric function of degree r
Pro =i 7
a
sy = AT . Schur function
as

= Zen WD) (g o))

Y wee, E(w)w(z?)

Example 3.4 ([M, §1.2 Ex.3 and §1.3 Ex.1]) Let ¢ be an indeterminates.

zﬂﬂ:IIle

1=0

: g-binomial coefficient

n) . o (=g
R

1 — gnte) c(x) : content
d h(z) : hook length  (See Example 2.4)
n(A) = ZiZI(i -1\

Example 3.5 ([M, §1.2 Ex.4 and §1.3 Ex.2]) Let n — oo in Example 3.4.

H@p:[11f¢t

i>0

Sx = qn(k) H

_ ph(z
xe/\l q()

r

1 r{r—
:}hr:HTqi’ eT:q( 1)/2h’7‘7 pr:l_qr
=1

1
— N
s=¢"V]] 1— @

10



Example 3.6 ([M, §1.2 Ex.5 and §1.3 Ex.3] and [Andrews, Chap.II])
Let a and b be indeterminates.

H(t) = H 1 — bg't

>0 1 —aqgt

Proof for the last statement on sy:

Substitute + — ¢/a and we have sy/al*l instead of sy. So we can assume a = 1. Next,
note that the both hand sides of the equation to be proved are polynomials in b. If
b=¢" (n=1,2,---), it reduces to Example 3.5, hence the equation is valid for infinitely
many value of b. We are done.

In the above Example 3.6, substitute a = 1 and b = —y.
For o = (1,2,---,r) € &, : cyclic permutation, we have

det(1 —qo|C)=1—¢".

1 —(=y)" _ det(l+4yo|C")

> r = =
P 1—q" det(1 — qo|Cr)

—> For w € G,, with cyclic type p;

= e G (= 7. 0) 0]

" 1+ g™
sy = ¢"W H T @ (by Example 3.6)
TEA

1
= Z Z—x’\(u)pu (by Theorem 3.2)
n

11



4 Comments and references

Mathiew :

H = (Cl\{zz = Zj}

cohomology H(H) : dim H'(H) = #{w € &,| I'(w) = i}
Is there any relation?

(Cf. Brieskorn [Brieskorn] and Orlik [Orlik].)

Schiffmann :
Is there a formula for x(0)?

partial answer:

type A; 1 : k(o) =
type E; & #(family) = 3: k(o) =
etc.

Tanisaki :
How about for Hecke algebra H,(W)?

L'(o;t) := Z o(T,)t" ™

wew

Oshima :

I'(w) can be expressed as a linear sum of characters. Is there a closed formula indicating
this fact?

partial answer:

clx;t) =Y x(w)t'™ = %C(X;t)

weWw

Since I'(w) = > (X, ')wx(w), we have

, 1 d 1
l'(w) = i XX: (adx; t) H) x(w) = (#—W > elxit )
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