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© Introduction

© First Fundamental Theorem (FFT)

© Second Fundamental Theorem (SFT)

@ Geometric invariant theory (a first step)
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Examples of invariants in broader sense

e © ¢ ¢

numbers ... of finite sets

dim ... of finite vector spaces

rank ... of matrix (or linear map)

genus ... of compact 2-dimensional surfaces

or we should say...
Euler characteristic ... of manifolds

Classification problem

— study of equivalence classes
= invariants
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@ Alexander/Jones/Homfly/Kauffman polynomials ... of knots and
links
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Introduction

There are more sophisticated invariants... which | vaguely understand

@ Alexander/Jones/Homfly/Kauffman polynomials ... of knots and
links
Vasiliev invariants
Chern-Simons invariants
Now there are so many invariants, quantum invariants, ...

@ Donaldson invariants
Seiberg-Witten invariants
Gromov-Witten invariants ... quantum cohomology

@ lwasawa invariants ... for class field theory

Study of invariants = Study of mathematics !
... Too big subject for us (at least for me)
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Examples of classical invariants in invariant theory
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Or more generally,
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Or more generally,
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Introduction

So what is invariant theory?

Examples of classical invariants in invariant theory
@ square of distance r? = x2 +--- 4+ x2 : orthogonal invariant

Or more generally,

quadratic form of signature (p,q) (p+ g =n)

2 2 _ 2 2

= Sylvester's law of inertia
@ determinant ; det X

det(gXg™!) =detX g : invertible matrix
det(gX) = det X g : unimodular matrix

trace : trace X

trace(gXg™!) = trace X g : invertible matrix
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Introduction

© discriminant : A(f)  ---Slo-invariant

f(x) = apx" + a1x" 1+ + ap_1x + ap
=do H}':1(X —G)

A(f) := a3"? [T (G — ¢j)*> ...polynomial in a = (ag, a1, .., an)
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Introduction

© discriminant : A(f)  ---Slo-invariant

f(x) = apx" + ax" T4+t a,_ix + a,
= ao HJ{':1(X - )
A(f) := a3"? [Tic;(Gi —¢j)? ...polynomial in a = (ag, a1,. . .,an)
Q resultant : R(f,g) ---Slo-invariant
f(x) = aox" + a1x" ' 4+ + ap1x+an = ao [[]_4 (x — i)
g(x) = box™ + bix™ L+ 4 bp_1x + by = by [ (x—&)
R(f.g):=ag by [1;;(CGi — &) ---polynomialin a & b
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Introduction

These are all polynomial invariants and
related to some group action

Here is a summary:

distance O, "¥R" : orthogonal group

quadratic form | O, 4 "> R" : indefinite orth group

det X,trace X | GL, ¥ M, : adjoint action

A(f),R(f,g) | SLo "¥ C[x, y]a

Here GL, = {g: nx n-matrix | 3g~! <= detg # 0}

Opq =18 € GLn | [lgxllp,g = lIXllpa} (n=pP+q)

where ||X||p7q:X12+"'+X3—X§+1—---—Xg+q

SL,={g € GL, |detg =1} example of reductive groups
2007/09/27
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Abstract setting

G : (linear) group "¥ X ¢ CV  : algebraic action of G on X
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Definition (algebraic action)
p: G x X — X : polynomial function s.t.

Q p(e;x) =x
O p(gh, x) = p(g, p(h; x))
Notation: g-x = gx = p(g, x)
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Abstract setting

G : (linear) group "¥ X ¢ CV  : algebraic action of G on X

Definition (algebraic action)

p: G x X — X : polynomial function s.t.
Q p(e;x) =x
Q p(gh,x) = p(g,p(h, x))

Notation: g-x = gx = p(g, x)

Polynomial functions and invariants:

C[X] :={f : X = C| f is polynomial function} : ring of regular functions

CIX]® :={f e C[X] | f(g~ ! x) = f(x) (Vg € G)} : ring of invariants
functions which are constant along orbits

— (C[X]¢ is graded by degree of polynomials, i.e., graded algebra
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Why invariants?

As we saw, invariants are ubiquitos in mathematics
In particular...

o Classifying mathematical objects

@ Understanding the original action G “¥ X

> orbits,
» homogeneous spaces, or prehomogeneous spaces
» symmetric spaces, symmetric domains, etc.

@ Harmonic analysis relative to the action G 7 X

» invariant integral, or Haar measure
» invariant differential operators (Laplacian) and spherical functions
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Why invariants?

As we saw, invariants are ubiquitos in mathematics
In particular...

o Classifying mathematical objects

@ Understanding the original action G “¥ X

> orbits,
» homogeneous spaces, or prehomogeneous spaces
» symmetric spaces, symmetric domains, etc.

@ Harmonic analysis relative to the action G 7 X

» invariant integral, or Haar measure
» invariant differential operators (Laplacian) and spherical functions
» Fourier transform, etc.

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27

9/ 24
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Introduction

Fundamental problems of invariant theory
Two classical problems ...

@ Find the ring generators {A;};c; C C[X]°
Question : 3 finite number of generators?
Can choose a good basis?

FFT = First Fundamental Theorem
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Introduction

Fundamental problems of invariant theory
Two classical problems ...

@ Find the ring generators {A;};c; C C[X]°
Question : 3 finite number of generators?
Can choose a good basis?

FFT = First Fundamental Theorem

@ Find all the relations among {A;}i¢/
Question: transcending degree?
singularities?
SFT = Second Fundamental Theorem

There are many kinds of answers - - -

Final Goal

Better understanding of C[X]® in geometric terms.
Understanding of the original action G " X through it.
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G : reductive, linear algebraic group
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First Fundamental Theorem (FFT)

Basic setting

G : reductive, linear algebraic group

Definition (algebraic group)

algebraic group = Zariski closed subgroup in GLy(C)
Zariski closed = solutions of the system of polynomial equations
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Basic setting

G : reductive, linear algebraic group

Definition (algebraic group)

algebraic group = Zariski closed subgroup in GLy(C)
Zariski closed = solutions of the system of polynomial equations

Definition (reductive)
reductive group = nilpotent radical is trivial
(if /k , k being algebraically closed, char k = 0)
=V finite dim representation is completely reducible
=V finite dim repr is decomposed into the direct sum of irreducibles

V : reducible <= V = U; ® U, (3U; : subrepresentation)
irreducibles = basi unit (atom) of representation

v
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Reductive groups
Example (reductive groups)
T = (C*)™ : torus

GL,-,, SLn; On; Son = OnmSLna Sp2n

Gy, F4, Es, E7, Es : exceptional groups

classical groups
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First Fundamental Theorem (FFT)

Reductive groups

Example (reductive groups)
T = (C*)™ : torus

GLp, SL,, Op, SO, = 0, NSL,, Spy, : classical groups
Gy, F4, Es, E7, Es : exceptional groups

Also we have a general machinery to produce reductive groups
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First Fundamental Theorem (FFT)

Reductive groups

Example (reductive groups)

T = (C*)™ : torus

GLp, SL,, Op, SO, = 0, NSL,, Spy, : classical groups
Gy, F4, Es, E7, Es : exceptional groups

Also we have a general machinery to produce reductive groups

Theorem
© Product of reductive groups is reductive
Q G : reductive, H C G : normal = G/H reductive (quotient)

Q G° : reductive => G : reductive (G° : identity component)
Extension by finite group (#G/G° < c0)
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First Fundamental Theorem (FFT)

Finite generation of invariants

Here is one of the best answer to FFT

Theorem (D. Hilbert 1990, 1993)

G : reductive " V = C" : vector space (linear repr)

= C[V]C : finitely generated algebra /C
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Finite generation of invariants

Here is one of the best answer to FFT

Theorem (D. Hilbert 1990, 1993)

G : reductive " V = C" : vector space (linear repr)
= C[V]C : finitely generated algebra /C

Remark

3 counter example for non-reductive G

... Nagata (1959) : Hilbert's 14th problem
Recent work by Mukai (2005) ... Rich examples of finite generation even
when G is not reductive )
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Example of actions of finite groups

#G < oo = G : reductive
CIV]I® = {R(f) | R(f)(x)

1
=76 Ygec fle 1)}
R(f) : Reynolds operator (projection to invariants)
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First Fundamental Theorem (FFT)

Example of actions of finite groups
#G < oo = G : reductive
CIVI® = (RIF) | ROV = g Tgec Fle )
R(f) : Reynolds operator (projection to invariants)
Theorem (E. Noether 1916)
C[V]® : generated by polynomials of degree < #G J
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#G < oo = G : reductive
1
CIVI® = {R(f) | R()(x) = %G Ygec fle1x)}
R(f) : Reynolds operator (projection to invariants)

Theorem (E. Noether 1916)

C[V]® : generated by polynomials of degree < #G J
Molien series : io: dim(C[V]¢) tk = 1 3 v
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Example of actions of finite groups
#G < oo = G : reductive
CIVI® = (RIF) | ROV = g Tgec Fle )

R(f) : Reynolds operator (projection to invariants)

Theorem (E. Noether 1916)
C[V]® : generated by polynomials of degree < #G J
Molien series : io: dim(C[V]¢) tk = 1 > __

k=0 k #G g6 det(l — tp(g))

Theorem
G : a finite reflection group
{Aq,...,A} C C[V]® : minimal homogeneous generators
= {dx =deg Ay |1 < k <} : uniquely determined (exponents)
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Rational invariants and Galois theory

Theorem

G : finite group = C(V)® = Q(C[V]®) : quotient field &
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First Fundamental Theorem (FFT)

Rational invariants and Galois theory

Theorem
G : finite group = C(V)® = Q(C[V]®) : quotient field &
[C(V) : C(V)®] = #G

C(V) : Galois extension of C(V)® with Galois group G
ie.,

Study of C[V]® < Galois theory for rings J
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Example: symmetric group action
G=6,YVv=C":

action by coordinate change
C[V]¢ = {symmetric polynomials} : invariants
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First Fundamental Theorem (FFT)

Example: symmetric group action

G=6,"vV =C": action by coordinate change
C[V]® = {symmetric polynomials} : invariants
Generators of the ring of invariants C[V]© :

o {elementary symm fun e (1 < k < n)} (L +tx) = ex(x)tk
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First Fundamental Theorem (FFT)

Example: symmetric group action

G=6,"YV =C": action by coordinate change
C[V]¢ = {symmetric polynomials} : invariants

Generators of the ring of invariants C[V]© :

o {elementary symm fun e (1 < k < n)} (L +tx) = ex(x)tk
i=1 k=0
n
o {power sum p(1 < k <)} p(x) = 3° xk
i=1
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First Fundamental Theorem (FFT)

Example: symmetric group action

G=6,"YV =C": action by coordinate change
C[V]¢ = {symmetric polynomials} : invariants

Generators of the ring of invariants C[V]© :

n n
o {elementary symm fun e (1 < k < n)} (L +tx) = ex(x)tk
i=1 k=0
n
o {power sum p(l < k < n)} pix) = 30 ¥
i=1
n 28]
o {complete symm fun he(L < k< n)}  JI(1 —tx)"t = 3 he(x)tk
i=1 k=0
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First Fundamental Theorem (FFT)

Example: symmetric group action

G=6,"YV =C": action by coordinate change
C[V]¢ = {symmetric polynomials} : invariants

Generators of the ring of invariants C[V]© :

n n
o {elementary symm fun e (1 < k < n)} (L +tx) = ex(x)tk
i=1 k=0
n
o {power sum p(l < k < n)} pix) = 30 ¥
i=1
n 28]
o {complete symm fun he(L < k< n)}  JI(1 —tx)"t = 3 he(x)tk
i=1 k=0

Exponents {1,2,...,n}
Gneretors are alegbraically independent
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First Fundamental Theorem (FFT)

Example: symmetric group action (continued)

Define a qutient map ® : V — C" by ®(v) = (e1(v), e2(v), ..., en(v))
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First Fundamental Theorem (FFT)

Example: symmetric group action (continued)

Define a qutient map ® : V — C" by ®(v) = (e1(v), e2(v), ..., en(v))
Lemma

®:V — C" is surjective & Sp-invariant
Every fiber ®~1(y) (y € C") is a single & ,-orbit
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First Fundamental Theorem (FFT)

Example: symmetric group action (continued)

Define a qutient map ® : V — C" by ®(v) = (e1(v), e2(v), ..., en(v))

Lemma

®:V — C" is surjective & Sp-invariant
Every fiber ®~1(y) (y € C") is a single & ,-orbit

Proof.
® surjective <= the fundamental theorem of algebra (Gauss’s theorem)

i.e., giving V coeff of the degree n equation,
3 n-solutions counting with multiplicity (< fiber) O
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First Fundamental Theorem (FFT)

Example: symmetric group action (continued)

Define a qutient map ® : V — C" by ®(v) = (e1(v), e2(v), ..., en(v))

Lemma
®:V — C" is surjective & Sp-invariant
Every fiber ®~1(y) (y € C") is a single & ,-orbit

Proof.
® surjective <= the fundamental theorem of algebra (Gauss’s theorem)

i.e., giving V coeff of the degree n equation,
3 n-solutions counting with multiplicity (< fiber) O

Thus we conclude V' /&, ~ C" via the quotient map ®
¢:V - C"/6, =C": generically [S, : 1] map (Galois covering)
Generic fiber ~ &, inherits regular representation of &,
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Orthogonal invariants
G =0,"YV =C": vector representation (mult of matrix against vector)

Problem
Describe the invariants for G ¥V @ --- @ V = vom J

U=C" = V9"~ V®Ux~M,n, coordinates xjj on M,
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Orthogonal invariants

G =0,"YV =C": vector representation (mult of matrix against vector)

Problem
Describe the invariants for G ¥V @ --- @ V = vom J

U=C" = V9"~ V®Ux~M,n, coordinates xjj on M,
FFT for orthogonal invariants:

Theorem (H. Weyl 1939)
C[v@m]on — (C[Zij | 1<i<j< m] where Zjj = ZZ:I XkiXkj J

X = (XU) S Mn,m = Z= (ZU) =tXX e Symm
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Orthogonal invariants

G =0,"YV =C": vector representation (mult of matrix against vector)

Problem
Describe the invariants for G ¥V @ --- @ V = vom J

U=C" = V9"~ V®Ux~M,n, coordinates xjj on M,
FFT for orthogonal invariants:

Theorem (H. Weyl 1939)
(C[V@’"]o" =Clz; |1<i<j<m] wherezj=>3 }_; XkiXkj J

X = (XU) S Mn,m = Z= (ZU) =tXX e Symm

Example
m=1: ([V]° =C[¢] E=x2+---+x2 J
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First Fundamental Theorem (FFT)

Contraction invariants

G=GL, Y V=C" = (C[V®7]® =C : trivial (NO invariants)
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Contraction invariants
G=GL, Y V=C" = (C[V®7]® =C : trivial (NO invariants)
Right setting using V* : contragredient (= dual) of V

Problem J

Describe invariants for G 7> VP @ y/*®4

Ui=CPU :=C1 = VP V¥ ~xVvoUaVoU ~M,,®M,q
coordinates xjj on M, 5, yjj on M, 4
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Contraction invariants
G=GL, Y V=C" = (C[V®7]® =C : trivial (NO invariants)
Right setting using V* : contragredient (= dual) of V

Problem J

Describe invariants for G 7> VP @ y/*®4

Ui=CPU :=C1 = VP V¥ ~xVvoUaVoU ~M,,®M,q
coordinates xjj on M, 5, yjj on M, 4

FFT for contraction invariants:
Theorem (H. Weyl 1939)

ClV®P @ V*®9Sn = (Clz; |1 < i< p,1<j<q] where
Zjj = Y p_1 XkiYkj : contraction of X and Y

X = (xij) € Mpp, Y = (yj) € Mng = Z = (25) ='XY € Mpq
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Second Fundamental Theorem = SFT

describing relations among generators ...
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Second Fundamental Theorem = SFT

describing relations among generators ... easiest case is:
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Second Fundamental Theorem (SFT)

Second Fundamental Theorem = SFT

describing relations among generators ... easiest case is:

Theorem (Shephard-Todd 1954)

Assume #G < oo, G ¥V : linear representation
C[V]€ is a polynomial ring (no relations)

<= G is a pseudo-reflection group

Remark

s : pseudo-reflection = 3U C V : (n — 1)-dim s.t. S‘U =idy
pseudo-reflection group = finite group generated by pseudo-reflections
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Second Fundamental Theorem = SFT

describing relations among generators ... easiest case is:

Theorem (Shephard-Todd 1954)
Assume #G < 0o, G ¥V : linear representation
C[V]C® is a polynomial ring (no relations)
<= G is a pseudo-reflection group

Remark

s : pseudo-reflection = 3U C V : (n — 1)-dim s.t. S‘U =idy
pseudo-reflection group = finite group generated by pseudo-reflections

If 3 relations, what we can do? Namely

Problem J

How to describe relations among generators?
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Second Fundamental Theorem (SFT)

Return to the general situation G 7 X (X cCN)
G : reductive ; X : affine variety (solutions of polynomial equations)

{Ay,...,An} CC[X]® : generators of invariants
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Second Fundamental Theorem (SFT)

Return to the general situation G 7 X (X cCN)
G : reductive ; X : affine variety (solutions of polynomial equations)

{Ay,...,An} CC[X]® : generators of invariants ==
Algebra morphism:

O Clyt,...,ym] @ F(y) = F(Ay,...,Ay) € CX]¢

I relation F(Ay1,...,Ap) =0 <= F(y) € Kero* =: |
i.e., | = Ker ®* C ([y] describes relations completely

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 21 /24



Second Fundamental Theorem (SFT)

Return to the general situation G 7 X (X cCN)
G : reductive ; X : affine variety (solutions of polynomial equations)
{Ay,...,An} CC[X]® : generators of invariants ==
Algebra morphism:
" 1 Cly1,. .., ym] 3 F(y) = F(A1,...,Am) € C[X]C

I relation F(Ay1,...,Ap) =0 <= F(y) € Kero* =: |
i.e., | = Ker ®* C ([y] describes relations completely

Theorem (Hilbert's basis theorem)
V ideal I C Cly] admits finite # of generators {Fy, ..., Fs}

Notation
I =(Fi,...,Fs) = 5, Cly]F; : ideal generated by {Fy, ..., F;}
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Second Fundamental Theorem (SFT)

SFT describes the generators of relations {Fq,..., F;} completely,
which are satisfied by invariants {Ag,...,Ap}
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Second Fundamental Theorem (SFT)

SFT describes the generators of relations {Fq,..., F;} completely,
which are satisfied by invariants {Ag,...,Ap}

Example (orthogonal invariants)

Recall G =0, Y V&M ~M,, (V=C")
coordinates xjj on M, , == orthog invariants : zj = > }_4 XkjXkj

X =(xj) EMpym = Z=(z) ='XX € Sym,,

Q@ m<n = {zj} : alg independent (no relation)
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Second Fundamental Theorem (SFT)

SFT describes the generators of relations {Fq,..., F;} completely,
which are satisfied by invariants {Ag,...,Ap}

Example (orthogonal invariants)

Recall G =0, Y V&M ~M,, (V=C")
coordinates xjj on M, , == orthog invariants : zj = > }_4 XkjXkj

X =(xj) EMpym = Z=(z) ='XX € Sym,,
Q@ m<n = {zj} : alg independent (no relation)

Q@ m>n = Z=(zj)isof rank n
(i.e., relations are (n + 1)-th minors in Sym,,)
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Geometric invariant theory (a first step)

Geometric point of view

I C Cly] : ideal of relations (prime)
«—— Y ={yeC"|F(y)=0(VF €l)} CC™: variety
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Geometric invariant theory (a first step)

Geometric point of view

I C Cly] : ideal of relations (prime)
«— Y={yeC"|F(y)=0(VF el)} CC™: variety
Key theorem:

Theorem (Hilbert's Nullstellensatz)

(reduced ideals in Cy]) > / Qiect
Y € (zero pt sets of polynomial equations) = (Z closed sets) C C™
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Geometric invariant theory (a first step)

Geometric point of view

I C Cly] : ideal of relations (prime)
«— Y={yeC"|F(y)=0(VF e€l)} CC™ : variety
Key theorem:
Theorem (Hilbert's Nullstellensatz)
(reduced ideals in Cly]) > / SR
Y € (zero pt sets of polynomial equations) = (Z closed sets) C C™
o I =1(Y)={F eCly]| F|, =0} c Cly]
o Y=V({)={yeC"|F(y)=0 (YFel)}ccCm
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Geometric invariant theory (a first step)

Geometric point of view

I C Cly] : ideal of relations (prime)
«— Y={yeC"|F(y)=0(VF e€l)} CC™ : variety
Key theorem:
Theorem (Hilbert's Nullstellensatz)
(reduced ideals in Cly]) > / SR
Y € (zero pt sets of polynomial equations) = (Z closed sets) C C™
o I =1(Y)={F eCly]| F|, =0} c Cly]
o Y=V()={yeC"|F(y)=0 (YFel)}cCm
I : prime ideal «+— Y : irreducible
(ile, Y=Y1UY2 (Yi:Zclosed) = Y =Yior Y =Y>)
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Geometric invariant theory (a first step)

Conclusion:

SFT = describe algebraic variety defined by relations
among invariants

To be continued...
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